Dukjin Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5231591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative proteomic profiling of Cervicovaginal fluid from pregnant women with term and preterm birth. Proteome Science, 2021, 19, 3.	0.7	11
2	SILAC-Based Quantitative Proteomic Analysis of Oxaliplatin-Resistant Pancreatic Cancer Cells. Cancers, 2021, 13, 724.	1.7	11
3	Anticancer Effects of Propionic Acid Inducing Cell Death in Cervical Cancer Cells. Molecules, 2021, 26, 4951.	1.7	20
4	Glioblastoma patient-derived cell-based phenotypic drug screening and identification of possible action mechanisms through proteomic analysis. STAR Protocols, 2021, 2, 100849.	0.5	0
5	Development of a threeâ€dimensional <i>in vitro</i> coâ€culture model to increase drug selectivity for humans. Diabetes, Obesity and Metabolism, 2020, 22, 1302-1315.	2.2	13
6	Effect of fibroblast co‑culture on the proliferation, viability and drug response of colon cancer cells. Oncology Letters, 2019, 17, 2409-2417.	0.8	29
7	Development of an infant formula certified reference material for the analysis of organic nutrients. Food Chemistry, 2019, 298, 125088.	4.2	10
8	Characterization of the Anti-Cancer Activity of the Probiotic Bacterium Lactobacillus fermentum Using 2D vs. 3D Culture in Colorectal Cancer Cells. Biomolecules, 2019, 9, 557.	1.8	42
9	Deuterium Oxide Labeling for Global Omics Relative Quantification: Application to Lipidomics. Analytical Chemistry, 2019, 91, 8853-8863.	3.2	7
10	Development of Triglyceride Certified Reference Materials in Human Frozen Serum Using Isotope Dilutionâ€Liquid Chromatography–Tandem Mass Spectrometry. Bulletin of the Korean Chemical Society, 2019, 40, 418-423.	1.0	1
11	iTRAQ-Based Quantitative Proteomic Comparison of 2D and 3D Adipocyte Cell Models Co-cultured with Macrophages Using Online 2D-nanoLC-ESI-MS/MS. Scientific Reports, 2019, 9, 16746.	1.6	14
12	Development of in vitro threeâ€dimensional coâ€culture system for metabolic syndrome therapeutic agents. Diabetes, Obesity and Metabolism, 2019, 21, 1146-1157.	2.2	13
13	Development of a parallel microbore hollow fiber enzyme reactor platform for online 18O-labeling: Application to lectin-specific lung cancer N-glycoproteome. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1100-1101, 58-64.	1.2	Ο
14	Quantitative Proteomic Analysis of 2D and 3D Cultured Colorectal Cancer Cells: Profiling of Tankyrase Inhibitor XAV939-Induced Proteome. Scientific Reports, 2018, 8, 13255.	1.6	22
15	Isotope-Coded Carbamidomethylation for Quantification of N-Glycoproteins with Online Microbore Hollow Fiber Enzyme Reactor-Nanoflow Liquid Chromatography-Tandem Mass Spectrometry. Analytical Chemistry, 2014, 86, 7650-7657.	3.2	21
16	Development of an Online Microbore Hollow Fiber Enzyme Reactor Coupled with Nanoflow Liquid Chromatography-Tandem Mass Spectrometry for Global Proteomics. Analytical Chemistry, 2013, 85, 5506-5513.	3.2	18
17	Dual Lectin-Based Size Sorting Strategy to Enrich Targeted N-Glycopeptides by Asymmetrical Flow Field-Flow Fractionation: Profiling Lung Cancer Biomarkers. Analytical Chemistry, 2012, 84, 5343-5350.	3.2	28
18	A Soft Preparative Method for Membrane Proteome Analysis Using Frit Inlet Asymmetrical Flow Field-Flow Fractionation: Application in a Prostatic Cancer Cell Line. Journal of Proteome Research, 2009, 8, 982-991.	1.8	13

Dukjin Kang

#	Article	IF	CITATIONS
19	Proteomic Analysis of Exosomes from Human Neural Stem Cells by Flow Field-Flow Fractionation and Nanoflow Liquid Chromatographyâ^'Tandem Mass Spectrometry. Journal of Proteome Research, 2008, 7, 3475-3480.	1.8	161
20	Separation of mitochondria by flow field-flow fractionation for proteomic analysis. Analyst, The, 2008, 133, 505.	1.7	55
21	Development of Non-Gel-Based Two-Dimensional Separation of Intact Proteins by an On-Line Hyphenation of Capillary Isoelectric Focusing and Hollow Fiber Flow Field-Flow Fractionation. Analytical Chemistry, 2006, 78, 5789-5798.	3.2	41
22	Dual-purpose sample trap for on-line strong cation-exchange chromatography/reversed-phase liquid chromatography/tandem mass spectrometry for shotgun proteomics. Journal of Chromatography A, 2005, 1070, 193-200.	1.8	36
23	Hollow Fiber Flow Field-Flow Fractionation of Proteins Using a Microbore Channel. Analytical Chemistry, 2005, 77, 4207-4212.	3.2	46
24	Miniaturization of Frit Inlet Asymmetrical Flow Field-Flow Fractionation. Analytical Chemistry, 2004, 76, 3851-3855.	3.2	31