José M Del Valle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5231377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supercritical CO2 extraction of aqueous suspensions of disrupted Haematococcus pluvialis cysts. Journal of Supercritical Fluids, 2022, 181, 105392.	3.2	3
2	Supercritical CO2 extraction of pinocembrin from Lippia origanoides distillation residues. 1. Multicomponent solubility and equilibrium partition. Journal of Supercritical Fluids, 2022, 180, 105426.	3.2	5
3	Extrusion affects supercritical CO2 extraction of red pepper (Capsicum annuum L.) oleoresin. Journal of Food Engineering, 2022, 316, 110829.	5.2	11
4	Supercritical CO2 extraction of pinocembrin from Lippia origanoides distillation residues. 2. Mathematical modeling of mass transfer kinetics as a function of substrate pretreatment. Journal of Supercritical Fluids, 2022, 180, 105458.	3.2	4
5	Radial Variations in Axial Velocity Affect Supercritical CO2 Extraction of Lipids from Pre-pressed Oilseeds. Food Engineering Reviews, 2021, 13, 185-203.	5.9	2
6	Supercritical CO2 extraction of pelletized oilseeds: Representation using a linear driving force model with a nonlinear sorption isotherm. Journal of Food Engineering, 2021, 288, 110241.	5.2	11
7	Temperature gradients within the packed bed affect cumulative supercritical CO2 extraction plots for oilseeds. Journal of Supercritical Fluids, 2021, , 105389.	3.2	Ο
8	Experimental solubility data of two solid derivatives of menadione in supercritical carbon dioxide: 2-((4-chlorobenzyl)amino)-3-methylnaphtalene-1,4-dione, and 2-((4-chlorophenethyl)amino)-3-methylnaphtalene-1,4-dione. Journal of Supercritical Fluids, 2020, 157, 104707.	3.2	3
9	Estimation of the solubility in supercritical CO2 of α- and δ-tocopherol using Chrastil' model. Journal of Supercritical Fluids, 2020, 157, 104688.	3.2	3
10	Supercritical CO2 extraction of solids using aqueous ethanol as static modifier is a two-step mass transfer process. Journal of Supercritical Fluids, 2019, 143, 179-190.	3.2	12
11	Particle size distribution and stratification of pelletized oilseeds affects cumulative supercritical CO2 extraction plots. Journal of Supercritical Fluids, 2019, 146, 189-198.	3.2	9
12	Effect of pelletization on supercritical CO2 extraction of rosemary antioxidants. Journal of Supercritical Fluids, 2019, 147, 162-171.	3.2	4
13	Supercritical CO2 oilseed extraction in multi-vessel plants. 3. Effect of extraction pressure and plant size on production cost. Journal of Supercritical Fluids, 2017, 122, 109-118.	3.2	17
14	Mathematical simulation of heat and mass transfer during controlled depressurization of supercritical CO2 in extraction vessels. Journal of Supercritical Fluids, 2017, 122, 43-51.	3.2	5
15	Use of molecular dynamics simulations to estimate the solubility of menadione in supercritical CO2 using Chrastil's model. Fluid Phase Equilibria, 2017, 433, 112-118.	2.5	9
16	Heat transfer and venting rate during controlled decompression of supercritical extraction vessels. Journal of Supercritical Fluids, 2017, 120, 275-284.	3.2	3
17	Countercurrent fractionation of aqueous apple aroma constituents using supercritical carbon dioxide. Journal of Supercritical Fluids, 2017, 120, 266-274.	3.2	12
18	Isothermal solubility in supercritical carbon dioxide of solid derivatives of 2,3-dichloronaphthalene-1,4-dione (dichlone): 2-(Benzylamino)-3-chloronaphthalene-1,4-dione and 2-chloro-3-(phenethylamino)naphthalene-1,4-dione. Journal of Supercritical Fluids, 2017, 129, 75-82.	3.2	10

JOSé M DEL VALLE

#	Article	IF	CITATIONS
19	Solubility of menadione and dichlone in supercritical carbon dioxide. Fluid Phase Equilibria, 2016, 423, 84-92.	2.5	22
20	Synthesis and solubility measurement in supercritical carbon dioxide of two solid derivatives of 2-methylnaphthalene-1,4-dione (menadione): 2-(Benzylamino)-3-methylnaphthalene-1,4-dione and 3-(phenethylamino)-2-methylnaphthalene-1,4-dione. Journal of Chemical Thermodynamics, 2016, 103, 325-332.	2.0	11
21	A Method for Fabricating Stainless Steel Pellets with Openâ€Cell Porosity by Alkaline Leaching of Silica Template. Advanced Engineering Materials, 2016, 18, 1616-1625.	3.5	2
22	Effect of high-pressure compaction on supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis. Journal of Food Engineering, 2016, 189, 123-134.	5.2	17
23	Adsorbent-assisted supercritical CO2 extraction of carotenoids from Neochloris oleoabundans paste. Journal of Supercritical Fluids, 2016, 112, 7-13.	3.2	21
24	Fractionation technologies for liquid mixtures using dense carbon dioxide. Journal of Supercritical Fluids, 2016, 107, 321-348.	3.2	35
25	Thermodynamic properties of CO2 during controlled decompression of supercritical extraction vessels. Journal of Supercritical Fluids, 2015, 98, 102-110.	3.2	6
26	Equilibrium partition of rapeseed oil between supercritical CO2 and prepressed rapeseed. Journal of Supercritical Fluids, 2015, 102, 80-91.	3.2	19
27	High-pressure (vapour+liquid) equilibria for ternary systems composed by {(E)-2-hexenal or hexanal+carbon dioxide+water}: Partition coefficient measurement. Journal of Chemical Thermodynamics, 2015, 89, 79-88.	2.0	7
28	Water relationships in Haematoccoccus pluvialis and their effect in high-pressure agglomeration for supercritical CO2 extraction. Journal of Food Engineering, 2015, 162, 18-24.	5.2	8
29	Measuring and validation for isothermal solubility data of solid 2-(3,4-Dimethoxyphenyl)-5,6,7,8-tetramethoxychromen-4-one (nobiletin) in supercritical carbon dioxide. Journal of Chemical Thermodynamics, 2015, 91, 378-383.	2.0	19
30	Extraction of natural compounds using supercritical CO2: Going from the laboratory to the industrial application. Journal of Supercritical Fluids, 2015, 96, 180-199.	3.2	102
31	Supercritical CO2 oilseed extraction in multi-vessel plants. 2. Effect of number and geometry of extractors on production cost. Journal of Supercritical Fluids, 2014, 92, 324-334.	3.2	28
32	Modeling solubility in supercritical carbon dioxide using quantitative structure–property relationships. Journal of Supercritical Fluids, 2014, 94, 113-122.	3.2	13
33	Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol. Journal of Supercritical Fluids, 2014, 92, 75-83.	3.2	132
34	Supercritical CO2 oilseed extraction in multi-vessel plants. 1. Minimization of operational cost. Journal of Supercritical Fluids, 2014, 92, 197-207.	3.2	23
35	Supercritical CO2 extraction of allicin from garlic flakes: Screening and kinetic studies. Food Research International, 2012, 45, 216-224.	6.2	31
36	Time Fractionation of Minor Lipids from Coldâ€Pressed Rapeseed Cake Using Supercritical CO ₂ . JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1135-1144.	1.9	7

JOSé M DEL VALLE

#	Article	IF	CITATIONS
37	Free solute content and solute-matrix interactions affect apparent solubility and apparent solute content in supercritical CO2 extractions. A hypothesis paper. Journal of Supercritical Fluids, 2012, 66, 157-175.	3.2	38
38	A refined equation for predicting the solubility of vegetable oils in high-pressure CO2. Journal of Supercritical Fluids, 2012, 67, 60-70.	3.2	52
39	Effect of triolein addition on the solubility of capsanthin in supercritical carbon dioxide. Journal of Chemical Thermodynamics, 2012, 51, 190-194.	2.0	19
40	Effect of boldo (Peumus boldus M.) pretreatment on kinetics of supercritical CO2 extraction of essential oil. Journal of Food Engineering, 2012, 109, 230-237.	5.2	15
41	Solubility of β-carotene in ethanol- and triolein-modified CO2. Journal of Chemical Thermodynamics, 2011, 43, 1991-2001.	2.0	30
42	Simulation of a supercritical carbon dioxide extraction plant with three extraction vessels. Computers and Chemical Engineering, 2011, 35, 2687-2695.	3.8	24
43	Correlation for the variations with temperature of solute solubilities in high temperature water. Fluid Phase Equilibria, 2011, 301, 206-216.	2.5	5
44	Mass Transfer and Equilibrium Parameters on High-Pressure CO2 Extraction of Plant Essential Oils. Food Engineering Series, 2010, , 393-470.	0.7	6
45	Matrix effects in supercritical CO2 extraction of essential oils from plant material. Journal of Food Engineering, 2009, 92, 438-447.	5.2	70
46	Solubility of 1,3-Dimethyl-7 <i>H</i> -purine-2,6-dione (Theophylline) in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2009, 54, 3034-3036.	1.9	5
47	Bubble-point measurements for the system CO2+aqueous ethanol solutions of boldo leaf antioxidant components (boldine and catechin) at high pressures. Fluid Phase Equilibria, 2007, 259, 77-82.	2.5	6
48	Supercritical CO2Extraction of Oilseeds: Review of Kinetic and Equilibrium Models. Critical Reviews in Food Science and Nutrition, 2006, 46, 131-160.	10.3	123
49	Solubility of carotenoid pigments (lycopene and astaxanthin) in supercritical carbon dioxide. Fluid Phase Equilibria, 2006, 247, 90-95.	2.5	74
50	Microstructural effects on internal mass transfer of lipids in prepressed and flaked vegetable substrates. Journal of Supercritical Fluids, 2006, 37, 178-190.	3.2	57
51	Contributions to supercritical extraction of vegetable substrates in Latin America. Journal of Food Engineering, 2005, 67, 35-57.	5.2	60
52	Measurement and modeling of solubilities of capsaicin in high-pressure CO2. Journal of Supercritical Fluids, 2005, 34, 195-201.	3.2	38
53	Solubility of boldo leaf antioxidant components (Boldine) in high-pressure carbon dioxide. Fluid Phase Equilibria, 2005, 235, 196-200.	2.5	14
54	Natural Convection Retards Supercritical CO2Extraction of Essential Oils and Lipids from Vegetable Substrates. Industrial & Engineering Chemistry Research, 2005, 44, 2879-2886.	3.7	28

JOSé M DEL VALLE

#	Article	IF	CITATIONS
55	Microstructureâ€Extractability Relationships in the Extraction of Prepelletized Jalapeño Peppers with Supercritical Carbon Dioxide. Journal of Food Science, 2005, 70, e379.	3.1	14
56	Supercritical CO2 processing of pretreated rosehip seeds: effect of process scale on oil extraction kinetics. Journal of Supercritical Fluids, 2004, 31, 159-174.	3.2	70
57	Supercritical carbon dioxide extraction of red pepper (Capsicum annuum L.) oleoresin. Journal of Food Engineering, 2004, 65, 55-66.	5.2	110
58	Recovery of antioxidants from boldo (Peumus boldus M.) by conventional and supercritical CO2 extraction. Food Research International, 2004, 37, 695-702.	6.2	31
59	Supercritical carbon dioxide extraction of pelletized Jalapeño peppers. Journal of the Science of Food and Agriculture, 2003, 83, 550-556.	3.5	36
60	Supercritical CO2 extraction of Chilean hop (Humulus lupulus) ecotypes. Journal of the Science of Food and Agriculture, 2003, 83, 1349-1356.	3.5	32
61	Particle size effects on supercritical CO2extraction of oil-containing seeds. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1261-1266.	1.9	60
62	Volumetric procedure to assess infiltration kinetics and porosity of fruits by applying a vacuum pulse. Journal of Food Engineering, 1998, 38, 207-221.	5.2	16
63	Physicochemical characterisation of raw fish and stickwater from fish meal production. Journal of the Science of Food and Agriculture, 1991, 54, 429-441.	3.5	13
64	Effects of Substrate Densification and CO2Conditions on Supercritical Extraction of Mushroom Oleoresins. Journal of Food Science, 1989, 54, 135-141.	3.1	29
65	An improved equation for predicting the solubility of vegetable oils in supercritical carbon dioxide. Industrial &: Engineering Chemistry Research, 1988, 27, 1551-1553.	3.7	337