Cheryl D Conrad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5231203/publications.pdf

Version: 2024-02-01

69 7,037 45
papers citations h-index

101 101 101 5996
all docs docs citations times ranked citing authors

69

g-index

#	Article	IF	CITATIONS
1	Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine treatment Behavioral Neuroscience, 1996, 110, 1321-1334.	0.6	645
2	Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy Behavioral Neuroscience, 1999, 113, 902-913.	0.6	562
3	Chronic Stress-induced Hippocampal Vulnerability: The Glucocorticoid Vulnerability Hypothesis. Reviews in the Neurosciences, 2008, 19, 395-411.	1.4	342
4	Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behavioral Neuroscience, 1999, 113, 902-13.	0.6	287
5	The effects of chronic stress on hippocampal morphology and function: An evaluation of chronic restraint paradigms. Brain Research, 2007, 1161, 56-64.	1.1	265
6	A critical review of chronic stress effects on spatial learning and memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 742-755.	2.5	264
7	Stress History and Pubertal Development Interact to Shape Hypothalamic-Pituitary-Adrenal Axis Plasticity. Endocrinology, 2006, 147, 1664-1674.	1.4	249
8	Influence of predator stress on the consolidation versus retrieval of long-term spatial memory and hippocampal spinogenesis. Hippocampus, 2006, 16, 571-576.	0.9	197
9	Support for a Bimodal Role for Type II Adrenal Steroid Receptors in Spatial Memory. Neurobiology of Learning and Memory, 1999, 72, 39-46.	1.0	191
10	Acute stress impairs spatial memory in male but not female rats: influence of estrous cycle. Pharmacology Biochemistry and Behavior, 2004, 78, 569-579.	1.3	189
11	Sex differences in spatial and non-spatial Y-maze performance after chronic stress. Neurobiology of Learning and Memory, 2003, 79, 32-40.	1.0	186
12	What Is the Functional Significance of Chronic Stress-Induced CA3 Dendritic Retraction Within the Hippocampus?. Behavioral and Cognitive Neuroscience Reviews, 2006, 5, 41-60.	3.9	184
13	Chronic stress and sex differences on the recall of fear conditioning and extinction. Neurobiology of Learning and Memory, 2009, 91, 323-332.	1.0	164
14	Acute predator stress impairs the consolidation and retrieval of hippocampus-dependent memory in male and female rats. Learning and Memory, 2008, 15, 271-280.	0.5	145
15	Chronic Stress- and Sex-Specific Neuromorphological and Functional Changes in Limbic Structures. Molecular Neurobiology, 2009, 40, 166-182.	1.9	143
16	Chronic stress impairs spatial memory and motivation for reward without disrupting motor ability and motivation to explore Behavioral Neuroscience, 2006, 120, 842-851.	0.6	139
17	Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder. Stress, 2008, 11, 259-281.	0.8	139
18	Prevention of stress-induced morphological and cognitive consequences. European Neuropsychopharmacology, 1997, 7, S323-S328.	0.3	127

#	Article	IF	CITATIONS
19	Chronic Glucocorticoids Increase Hippocampal Vulnerability to Neurotoxicity under Conditions That Produce CA3 Dendritic Retraction But Fail to Impair Spatial Recognition Memory. Journal of Neuroscience, 2007, 27, 8278-8285.	1.7	124
20	The effects of Type I and Type II corticosteroid receptor agonists on exploratory behavior and spatial memory in the Y-maze. Brain Research, 1997, 759, 76-83.	1.1	114
21	Attenuating corticosterone levels on the day of memory assessment prevents chronic stress-induced impairments in spatial memory. European Journal of Neuroscience, 2006, 24, 595-605.	1.2	113
22	Chronic stress enhances spatial memory in ovariectomized female rats despite CA3 dendritic retraction: Possible involvement of CA1 neurons. Neuroscience, 2005, 135, 1045-1054.	1.1	103
23	Selective loss of hippocampal granule cells following adrenalectomy: implications for spatial memory. Journal of Neuroscience, 1993, 13, 2582-2590.	1.7	102
24	Short CommunicationChronic stress leaves novelty-seeking behavior intact while impairing spatial recognition memory in the Y-maze. Stress, 2005, 8, 151-154.	0.8	102
25	Enriched environment prevents chronic stress-induced spatial learning and memory deficits. Behavioural Brain Research, 2008, 187, 41-47.	1.2	102
26	Sex differences and phase of light cycle modify chronic stress effects on anxiety and depressive-like behavior. Behavioural Brain Research, 2011, 222, 212-222.	1.2	100
27	Assessment of estradiol influence on spatial tasks and hippocampal CA1 spines: Evidence that the duration of hormone deprivation after ovariectomy compromises $17\hat{l}^2$ -estradiol effectiveness in altering CA1 spines. Hormones and Behavior, 2008, 54, 386-395.	1.0	93
28	Influence of chronic corticosterone and glucocorticoid receptor antagonism in the amygdala on fear conditioning. Neurobiology of Learning and Memory, 2004, 81, 185-199.	1.0	87
29	Dentate gyrus destruction and spatial learning impairment after corticosteroid removal in young and middle-aged rats. Hippocampus, 1995, 5, 1-15.	0.9	82
30	Environmental enrichment protects against the effects of chronic stress on cognitive and morphological measures of hippocampal integrity. Neurobiology of Learning and Memory, 2012, 97, 250-260.	1.0	80
31	Chronic stress impairs prefrontal cortex-dependent response inhibition and spatial working memory Behavioral Neuroscience, 2012, 126, 605-619.	0.6	78
32	The Relationship between Acute Glucocorticoid Levels and Hippocampal Function Depends upon Task Aversiveness and Memory Processing Stage. Nonlinearity in Biology, Toxicology, Medicine, 2005, 3, nonlin.003.01.0.	0.4	74
33	Prefrontal cortex lesions and sex differences in fear extinction and perseveration. Learning and Memory, 2010, 17, 267-278.	0.5	74
34	Acute stress increases neuropeptide Y mRNA within the arcuate nucleus and hilus of the dentate gyrus. Molecular Brain Research, 2000, 79, 102-109.	2.5	72
35	Chronic stress and hippocampal dendritic complexity: Methodological and functional considerations. Physiology and Behavior, 2017, 178, 66-81.	1.0	70
36	Chronic 17βâ€estradiol or cholesterol prevents stressâ€induced hippocampal CA3 dendritic retraction in ovariectomized female rats: Possible correspondence between CA1 spine properties and spatial acquisition. Hippocampus, 2010, 20, 768-786.	0.9	66

#	Article	IF	CITATIONS
37	Combination of high fat diet and chronic stress retracts hippocampal dendrites. NeuroReport, 2005, 16, 39-43.	0.6	63
38	Chronic stress disrupts fear extinction and enhances amygdala and hippocampal Fos expression in an animal model of post-traumatic stress disorder. Neurobiology of Learning and Memory, 2014, 112, 139-147.	1.0	63
39	Impact of the Hypothalamic–pituitary–adrenal/gonadal Axes on Trajectory of Age-Related Cognitive Decline. Progress in Brain Research, 2010, 182, 31-76.	0.9	62
40	Chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring of the striatum. Neuroscience, 2014, 280, 231-242.	1.1	58
41	Recovery after chronic stress within spatial reference and working memory domains: correspondence with hippocampal morphology. European Journal of Neuroscience, 2011, 34, 1023-1030.	1.2	56
42	Chronic stress enhances ibotenic acid-induced damage selectively within the hippocampal CA3 region of male, but not female rats. Neuroscience, 2004, 125, 759-767.	1.1	52
43	The prodrug DHED selectively delivers $17\hat{l}^2$ -estradiol to the brain for treating estrogen-responsive disorders. Science Translational Medicine, 2015, 7, 297ra113.	5.8	51
44	Early and Persistent Dendritic Hypertrophy in the Basolateral Amygdala following Experimental Diffuse Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 213-219.	1.7	51
45	The impact from the aftermath of chronic stress on hippocampal structure and function: Is there a recovery?. Frontiers in Neuroendocrinology, 2018, 49, 114-123.	2.5	47
46	Chronic stress and a cyclic regimen of estradiol administration separately facilitate spatial memory: Relationship with hippocampal CA1 spine density and dendritic complexity Behavioral Neuroscience, 2012, 126, 142-156.	0.6	46
47	Chronic unpredictable intermittent restraint stress disrupts spatial memory in male, but not female rats. Behavioural Brain Research, 2020, 383, 112519.	1.2	34
48	Peripubertal anxiety profile can predict predisposition to spatial memory impairments following chronic stress. Behavioural Brain Research, 2006, 166, 263-270.	1.2	33
49	Metyrapone Reveals That Previous Chronic Stress Differentially Impairs Hippocampal-dependent Memory. Stress, 2001, 4, 305-318.	0.8	32
50	Sex-specific impairment and recovery of spatial learning following the end of chronic unpredictable restraint stress: Potential relevance of limbic GAD. Behavioural Brain Research, 2015, 282, 176-184.	1.2	32
51	Chronic stress enhanced fear memories are associated with increased amygdala zif268 mRNA expression and are resistant to reconsolidation. Neurobiology of Learning and Memory, 2015, 120, 61-68.	1.0	31
52	Chronic stress, cyclic $17\hat{l}^2$ -estradiol, and daily handling influences on fear conditioning in the female rat. Neurobiology of Learning and Memory, 2010, 94, 422-433.	1.0	29
53	Hippocampal brainâ€derived neurotrophic factor mediates recovery from chronic stressâ€induced spatial reference memory deficits. European Journal of Neuroscience, 2014, 40, 3351-3362.	1.2	29
54	Calcitonin gene-related peptide level in the rat dentate gyrus increases after damage. NeuroReport, 1996, 7, 1036-1040.	0.6	28

#	Article	IF	CITATIONS
55	High serum androstenedione levels correlate with impaired memory in the surgically menopausal rat: a replication and new findings. European Journal of Neuroscience, 2012, 36, 3086-3095.	1.2	22
56	The Noonan Syndrome-linked Raf1L613V mutation drives increased glial number in the mouse cortex and enhanced learning. PLoS Genetics, 2019, 15, e1008108.	1.5	22
57	BDNF and TrkB Mediate the Improvement from Chronic Stress-induced Spatial Memory Deficits and CA3 Dendritic Retraction. Neuroscience, 2018, 388, 330-346.	1.1	18
58	Cholesterol and perhaps estradiol protect against corticosterone-induced hippocampal CA3 dendritic retraction in gonadectomized female and male rats. Neuroscience, 2013, 246, 409-421.	1.1	16
59	A long-term cyclic plus tonic regimen of $17\hat{l}^2$ -estradiol improves the ability to handle a high spatial working memory load in ovariectomized middle-aged female rats. Hormones and Behavior, 2020, 118, 104656.	1.0	13
60	Longâ€Term Adrenalectomy can Decrease or Increase Hippocampal Dentate Gyrus Volumes. Journal of Neuroendocrinology, 1997, 9, 355-361.	1.2	9
61	Experience-dependent effects of context and restraint stress on corticolimbic c-Fos expression. Stress, 2013, 16, 587-591.	0.8	9
62	Antagonizing the GABAA receptor during behavioral training improves spatial memory at different doses in control and chronically stressed rats. Neurobiology of Learning and Memory, 2017, 145, 114-118.	1.0	9
63	Chronic variable stress and intravenous methamphetamine self-administration – Role of individual differences in behavioral and physiological reactivity to novelty. Neuropharmacology, 2016, 108, 353-363.	2.0	7
64	Estrous Cycle Modulation of Feeding and Relaxin-3/Rxfp3 mRNA Expression - Implications for Estradiol. Neuroendocrinology, 2020, 111, 1201-1218.	1.2	6
65	The differential role of the dorsal hippocampus in initiating and terminating timed responses: A lesion study using the switch-timing task. Behavioural Brain Research, 2019, 376, 112184.	1.2	4
66	A Tribute to Bruce S. McEwen. Trends in Neurosciences, 2020, 43, 127-130.	4.2	3
67	Chronic stress has different immediate and delayed effects on hippocampal calretinin―and somatostatinâ€positive cells. Hippocampus, 2021, 31, 221-231.	0.9	3
68	Chronic stress has lasting effects on improved cued discrimination early in extinction. Learning and Memory, 2020, 27, 319-327.	0.5	2
69	Stress and Spatial Maze Performance in the Rat. Neuromethods, 2015, , 211-258.	0.2	1