Michael J Palladino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5230865/publications.pdf

Version: 2024-02-01

623734 610901 28 615 14 24 citations g-index h-index papers 30 30 30 1003 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Itavastatin and Resveratrol increase triosephosphate isomerase protein (TPI) in a newly identified variant, TPIQ181P, that confers TPI deficiency. DMM Disease Models and Mechanisms, 2022, , .	2.4	2
2	Vesicular glutamate transporter modulates sex differences in dopamine neuron vulnerability to ageâ€related neurodegeneration. Aging Cell, 2021, 20, e13365.	6.7	20
3	Identification of protein quality control regulators using a Drosophila model of TPI deficiency. Neurobiology of Disease, 2021, 152, 105299.	4.4	5
4	A High-Content Screening Assay for Small Molecules That Stabilize Mutant Triose Phosphate Isomerase (TPI) as Treatments for TPI Deficiency. SLAS Discovery, 2021, 26, 1029-1039.	2.7	2
5	Chemical Targeting of Voltage Sensitive Dyes to Specific Cells and Molecules in the Brain. Journal of the American Chemical Society, 2020, 142, 9285-9301.	13.7	17
6	Ketogenic and anaplerotic dietary modifications ameliorate seizure activity in Drosophila models of mitochondrial encephalomyopathy and glycolytic enzymopathy. Molecular Genetics and Metabolism, 2019, 126, 439-447.	1.1	16
7	Missense variant in TPI1 (Arg189Gln) causes neurologic deficits through structural changes in the triosephosphate isomerase catalytic site and reduced enzyme levels in vivo. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2257-2266.	3.8	12
8	Sleep and circadian defects in a Drosophila model of mitochondrial encephalomyopathy. Neurobiology of Sleep and Circadian Rhythms, 2019, 6, 44-52.	2.8	7
9	Adaptive substitutions underlying cardiac glycoside insensitivity in insects exhibit epistasis in vivo. ELife, 2019, 8, .	6.0	28
10	Allotopic Gene Therapy as a Treatment for Mitochondrial Disease. FASEB Journal, 2019, 33, 811.9.	0.5	0
11	Molecular Neuroprotection Induced by Zinc-Dependent Expression of Hepatitis C–Derived Protein NS5A Targeting Kv2.1 Potassium Channels. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 348-355.	2.5	6
12	Mutational analysis implicates the amyloid fibril as the toxic entity in Huntington's disease. Neurobiology of Disease, 2018, 120, 126-138.	4.4	37
13	Protein coding mitochondrial-targeted RNAs rescue mitochondrial disease in vivo. Neurobiology of Disease, 2018, 117, 203-210.	4.4	3
14	Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics. PLoS Genetics, 2016, 12, e1005941.	3.5	23
15	The ATP-sensitive K channel is seizure protective and required for effective dietary therapy in a model of mitochondrial encephalomyopathy. Journal of Neurogenetics, 2016, 30, 247-258.	1.4	16
16	Triosephosphate isomerase I170V alters catalytic site, enhances stability and induces pathology in a Drosophila model of TPI deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 61-69.	3.8	29
17	Genome-wide screen for modifiers of Na $+$ /K $+$ ATPase alleles identifies critical genetic loci. Molecular Brain, 2014, 7, 89.	2.6	8
18	Genetically Encoded Redox Sensors. Methods in Enzymology, 2014, 542, 263-287.	1.0	7

#	Article	IF	CITATION
19	Small mitochondrial-targeted RNAs modulate endogenous mitochondrial protein expression in vivo. Neurobiology of Disease, 2014, 69, 15-22.	4.4	10
20	Early mitochondrial dysfunction leads to altered redox chemistry underlying pathogenesis of TPI deficiency. Neurobiology of Disease, 2013, 54, 289-296.	4.4	13
21	Evidence of a triosephosphate isomerase non-catalytic function critical to behavior and longevity. Journal of Cell Science, 2013, 126, 3151-8.	2.0	36
22	Modeling mitochondrial encephalomyopathy in Drosophila. Neurobiology of Disease, 2010, 40, 40-45.	4.4	13
23	Hsp70- and Hsp90-mediated proteasomal degradation underlies TPIsugarkill pathogenesis in Drosophila. Neurobiology of Disease, 2010, 40, 676-683.	4.4	16
24	Novel mutations affecting the Na, K ATPase alpha model complex neurological diseases and implicate the sodium pump in increased longevity. Human Genetics, 2009, 126, 431-447.	3.8	34
25	Degradation of Functional Triose Phosphate Isomerase Protein Underlies sugarkill Pathology. Genetics, 2008, 179, 855-862.	2.9	30
26	Drosophila Model of Human Inherited Triosephosphate Isomerase Deficiency Glycolytic Enzymopathy. Genetics, 2006, 174, 1237-1246.	2.9	34
27	Neural Dysfunction and Neurodegeneration in <i>Drosophila</i> Na ⁺ /K ⁺ ATPase Alpha Subunit Mutants. Journal of Neuroscience, 2003, 23, 1276-1286.	3.6	106
28	Temperature-Sensitive Paralytic Mutants Are Enriched For Those Causing Neurodegeneration in Drosophila. Genetics, 2002, 161, 1197-1208.	2.9	84