Jaana Vapaavuori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5230677/publications.pdf

Version: 2024-02-01

54 1,906 21 43
papers citations h-index g-index

54 54 54 2405
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Plantâ∈Based Structures as an Opportunity to Engineer Optical Functions in Nextâ€Generation Light Management. Advanced Materials, 2022, 34, e2104473.	11.1	48
2	Probing interfacial interactions and dynamics of polymers enclosed in boron nitride nanotubes. Journal of Polymer Science, 2022, 60, 233-243.	2.0	0
3	Transparent conductive electrode based on LBL deposition of graphene oxide and copper nanowires. Materials Letters, 2022, 311, 131632.	1.3	4
4	Stability improvement of MAPbI3-based perovskite solar cells using a photoactive solid-solid phase change material. Journal of Alloys and Compounds, 2022, 897, 163142.	2.8	8
5	Biowaste-derived electrode and electrolyte materials for flexible supercapacitors. Chemical Engineering Journal, 2022, 435, 135058.	6.6	25
6	Perspective about Cellulose-Based Pressure and Strain Sensors for Human Motion Detection. Biosensors, 2022, 12, 187.	2.3	12
7	Tuning the Porosity, Water Interaction, and Redispersion of Nanocellulose Hydrogels by Osmotic Dehydration. ACS Applied Polymer Materials, 2022, 4, 24-28.	2.0	11
8	Understanding nanodomain morphology formation in dip-coated PS- <i>b</i> -PEO thin films. Nanoscale Advances, 2021, 3, 4996-5007.	2.2	4
9	Multiscale Hierarchical Surface Patterns by Coupling Optical Patterning and Thermal Shrinkage. ACS Applied Materials & Diterfaces, 2021, 13, 15563-15571.	4.0	9
10	Ultrathinâ€Walled 3D Inorganic Nanostructured Networks Templated from Crossâ€Linked Cellulose Nanocrystal Aerogels. Advanced Materials Interfaces, 2021, 8, 2001181.	1.9	2
11	Controllable Production of Ag/Zn and Ag Particles from Hydrometallurgical Zinc Solutions. ACS Sustainable Chemistry and Engineering, 2021, 9, 8186-8197.	3.2	9
12	An open-source camera system for experimental measurements. SoftwareX, 2021, 14, 100688.	1.2	11
13	Molecular-Level Photo-Orientation Insights into Macroscopic Photo-Induced Motion in Azobenzene-Containing Polymer Complexes. Journal of Physical Chemistry B, 2021, 125, 7871-7885.	1.2	1
14	Micro- and nanocelluloses from non-wood waste sources; processes and use in industrial applications. Soft Matter, 2021, 17, 9842-9858.	1.2	12
15	Textile integrable mechanochromic strain sensor based on the interplay of supramolecular interactions. Materials and Design, 2021, 212, 110175.	3.3	2
16	Effect of hydrogen-bond strength on photoresponsive properties of polymer-azobenzene complexes. Canadian Journal of Chemistry, 2020, 98, 531-538.	0.6	3
17	Update on women in physics in Finland. AIP Conference Proceedings, 2019, , .	0.3	2
18	Cellulose Nanocrystal Aerogels as Electrolyte Scaffolds for Glass and Plastic Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 5635-5642.	2.5	29

#	Article	IF	Citations
19	Photobreathing Zwitterionic Micelles. ChemSystemsChem, 2019, 1, e1900018.	1.1	3
20	2.5D Hierarchical Structuring of Nanocomposite Hydrogel Films Containing Cellulose Nanocrystals. ACS Applied Materials & Distriction (2019), 11, 6325-6335.	4.0	25
21	Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 10257-10265.	3.2	18
22	Patterned Cellulose Nanocrystal Aerogel Films with Tunable Dimensions and Morphologies as Ultra-Porous Scaffolds for Cell Culture. ACS Applied Nano Materials, 2019, 2, 4169-4179.	2.4	25
23	Photocontrol of Supramolecular Azo-Containing Block Copolymer Thin Films during Dip-Coating: Toward Nanoscale Patterned Coatings. ACS Applied Nano Materials, 2019, 2, 3526-3537.	2.4	4
24	Dynamically Evolving Surface Patterns through Light-Triggered Wrinkling Erasure. Langmuir, 2019, 35, 875-881.	1.6	6
25	Molecular-Level Study of Photoorientation in Hydrogen-Bonded Azopolymer Complexes. Macromolecules, 2018, 51, 1077-1087.	2.2	16
26	Supramolecular design principles for efficient photoresponsive polymer–azobenzene complexes. Journal of Materials Chemistry C, 2018, 6, 2168-2188.	2.7	94
27	Taming Macromolecules with Light: Lessons Learned from Vibrational Spectroscopy. Macromolecular Rapid Communications, 2018, 39, 1700430.	2.0	6
28	Fast formation of a supramolecular ion gel/solvoplastic elastomer with excellent stretchability. Royal Society Open Science, 2018, 5, 180271.	1.1	0
29	Recent progress in flexible dye solar cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e302.	1.9	18
30	Photoactive/Passive Molecular Glass Blends: An Efficient Strategy to Optimize Azomaterials for Surface Relief Grating Inscription. ACS Applied Materials & Interfaces, 2017, 9, 798-808.	4.0	12
31	Supramolecular control of liquid crystals by doping with halogen-bonding dyes. RSC Advances, 2017, 7, 40237-40242.	1.7	18
32	Polysulfobetaine-surfactant solutions and their use in stabilizing hydrophobic compounds in saline solution. Polymer, 2017, 127, 77-87.	1.8	15
33	The Orange Side of Disperse Red 1: Humidityâ€Driven Color Switching in Supramolecular Azoâ€Polymer Materials Based on Reversible Dye Aggregation. Macromolecular Rapid Communications, 2017, 38, 1600582.	2.0	17
34	Influence of Supramolecular Interaction Type on Photoresponsive Azopolymer Complexes: A Surface Relief Grating Formation Study. Macromolecules, 2016, 49, 4923-4934.	2.2	27
35	Update on women in physics in Finland. AIP Conference Proceedings, 2015, , .	0.3	0
36	Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning. Journal of Materials Chemistry C, 2015, 3, 759-768.	2.7	87

#	Article	IF	CITATIONS
37	In Situ Photocontrol of Block Copolymer Morphology During Dip-Coating of Thin Films. ACS Macro Letters, 2015, 4, 1158-1162.	2.3	15
38	From partial to complete optical erasure of azobenzene–polymer gratings: effect of molecular weight. Journal of Materials Chemistry C, 2015, 3, 11011-11016.	2.7	46
39	Submolecular Plasticization Induced by Photons in Azobenzene Materials. Journal of the American Chemical Society, 2015, 137, 13510-13517.	6.6	76
40	Photomechanical Energy Transfer to Photopassive Polymers through Hydrogen and Halogen Bonds. Macromolecules, 2015, 48, 7535-7542.	2.2	27
41	Light-Driven Surface Patterning of Supramolecular Polymers with Extremely Low Concentration of Photoactive Molecules. ACS Macro Letters, 2014, 3, 1196-1200.	2.3	52
42	Are Two Azo Groups Better than One? Investigating the Photoresponse of Polymer-Bisazobenzene Complexes. Chemistry of Materials, 2014, 26, 5089-5096.	3.2	57
43	A Supramolecular Approach to Photoresponsive Thermo/Solvoplastic Block Copolymer Elastomers. Macromolecules, 2014, 47, 7099-7108.	2.2	13
44	Enhanced nonlinearity by H-bonded polymer–dye complex in liquid crystal for holographic gratings. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1456.	0.9	4
45	Nanocellulose aerogel membranes for optimal electrolyte filling in dye solar cells. Nano Energy, 2014, 8, 95-102.	8.2	51
46	Photoinduced surface patterning of azobenzene-containing supramolecular dendrons, dendrimers and dendronized polymers. Optical Materials Express, 2013, 3, 711.	1.6	12
47	Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers. Journal of Materials Chemistry C, 2013, 1, 2806.	2.7	34
48	Biomimetic zinc chlorin–poly(4-vinylpyridine) assemblies: doping level dependent emission–absorption regimes. Journal of Materials Chemistry C, 2013, 1, 2166.	2.7	24
49	Surface-Relief Gratings and Stable Birefringence Inscribed Using Light of Broad Spectral Range in Supramolecular Polymer-Bisazobenzene Complexes. Journal of Physical Chemistry C, 2012, 116, 2363-2370.	1.5	57
50	Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design. Journal of Materials Chemistry, 2011, 21, 15437.	6.7	55
51	Self-orienting liquid crystal doped with polymer-azo-dye complex. Optical Materials Express, 2011, 1, 1463.	1.6	24
52	Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes. Journal of Materials Chemistry, 2010, 20, 5260.	6.7	70
53	Hydrogen-Bonded Polymerâ^'Azobenzene Complexes: Enhanced Photoinduced Birefringence with High Temporal Stability through Interplay of Intermolecular Interactions. Chemistry of Materials, 2008, 20, 6358-6363.	3.2	111
54	Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 2008, 4, 2492.	1.2	595