Jaana Vapaavuori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5230677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 2008, 4, 2492.	1.2	595
2	Hydrogen-Bonded Polymerâ^'Azobenzene Complexes: Enhanced Photoinduced Birefringence with High Temporal Stability through Interplay of Intermolecular Interactions. Chemistry of Materials, 2008, 20, 6358-6363.	3.2	111
3	Supramolecular design principles for efficient photoresponsive polymer–azobenzene complexes. Journal of Materials Chemistry C, 2018, 6, 2168-2188.	2.7	94
4	Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning. Journal of Materials Chemistry C, 2015, 3, 759-768.	2.7	87
5	Submolecular Plasticization Induced by Photons in Azobenzene Materials. Journal of the American Chemical Society, 2015, 137, 13510-13517.	6.6	76
6	Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes. Journal of Materials Chemistry, 2010, 20, 5260.	6.7	70
7	Surface-Relief Gratings and Stable Birefringence Inscribed Using Light of Broad Spectral Range in Supramolecular Polymer-Bisazobenzene Complexes. Journal of Physical Chemistry C, 2012, 116, 2363-2370.	1.5	57
8	Are Two Azo Groups Better than One? Investigating the Photoresponse of Polymer-Bisazobenzene Complexes. Chemistry of Materials, 2014, 26, 5089-5096.	3.2	57
9	Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design. Journal of Materials Chemistry, 2011, 21, 15437.	6.7	55
10	Light-Driven Surface Patterning of Supramolecular Polymers with Extremely Low Concentration of Photoactive Molecules. ACS Macro Letters, 2014, 3, 1196-1200.	2.3	52
11	Nanocellulose aerogel membranes for optimal electrolyte filling in dye solar cells. Nano Energy, 2014, 8, 95-102.	8.2	51
12	Plantâ€Based Structures as an Opportunity to Engineer Optical Functions in Nextâ€Generation Light Management. Advanced Materials, 2022, 34, e2104473.	11.1	48
13	From partial to complete optical erasure of azobenzene–polymer gratings: effect of molecular weight. Journal of Materials Chemistry C, 2015, 3, 11011-11016.	2.7	46
14	Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers. Journal of Materials Chemistry C, 2013, 1, 2806.	2.7	34
15	Cellulose Nanocrystal Aerogels as Electrolyte Scaffolds for Glass and Plastic Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 5635-5642.	2.5	29
16	Photomechanical Energy Transfer to Photopassive Polymers through Hydrogen and Halogen Bonds. Macromolecules, 2015, 48, 7535-7542.	2.2	27
17	Influence of Supramolecular Interaction Type on Photoresponsive Azopolymer Complexes: A Surface Relief Grating Formation Study. Macromolecules, 2016, 49, 4923-4934.	2.2	27
18	2.5D Hierarchical Structuring of Nanocomposite Hydrogel Films Containing Cellulose Nanocrystals. ACS Applied Materials & amp; Interfaces, 2019, 11, 6325-6335.	4.0	25

JAANA VAPAAVUORI

#	Article	IF	CITATIONS
19	Patterned Cellulose Nanocrystal Aerogel Films with Tunable Dimensions and Morphologies as Ultra-Porous Scaffolds for Cell Culture. ACS Applied Nano Materials, 2019, 2, 4169-4179.	2.4	25
20	Biowaste-derived electrode and electrolyte materials for flexible supercapacitors. Chemical Engineering Journal, 2022, 435, 135058.	6.6	25
21	Self-orienting liquid crystal doped with polymer-azo-dye complex. Optical Materials Express, 2011, 1, 1463.	1.6	24
22	Biomimetic zinc chlorin–poly(4-vinylpyridine) assemblies: doping level dependent emission–absorption regimes. Journal of Materials Chemistry C, 2013, 1, 2166.	2.7	24
23	Supramolecular control of liquid crystals by doping with halogen-bonding dyes. RSC Advances, 2017, 7, 40237-40242.	1.7	18
24	Recent progress in flexible dye solar cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e302.	1.9	18
25	Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 10257-10265.	3.2	18
26	The Orange Side of Disperse Red 1: Humidityâ€Driven Color Switching in Supramolecular Azoâ€Polymer Materials Based on Reversible Dye Aggregation. Macromolecular Rapid Communications, 2017, 38, 1600582.	2.0	17
27	Molecular-Level Study of Photoorientation in Hydrogen-Bonded Azopolymer Complexes. Macromolecules, 2018, 51, 1077-1087.	2.2	16
28	In Situ Photocontrol of Block Copolymer Morphology During Dip-Coating of Thin Films. ACS Macro Letters, 2015, 4, 1158-1162.	2.3	15
29	Polysulfobetaine-surfactant solutions and their use in stabilizing hydrophobic compounds in saline solution. Polymer, 2017, 127, 77-87.	1.8	15
30	A Supramolecular Approach to Photoresponsive Thermo/Solvoplastic Block Copolymer Elastomers. Macromolecules, 2014, 47, 7099-7108.	2.2	13
31	Photoinduced surface patterning of azobenzene-containing supramolecular dendrons, dendrimers and dendronized polymers. Optical Materials Express, 2013, 3, 711.	1.6	12
32	Photoactive/Passive Molecular Glass Blends: An Efficient Strategy to Optimize Azomaterials for Surface Relief Grating Inscription. ACS Applied Materials & Interfaces, 2017, 9, 798-808.	4.0	12
33	Micro- and nanocelluloses from non-wood waste sources; processes and use in industrial applications. Soft Matter, 2021, 17, 9842-9858.	1.2	12
34	Perspective about Cellulose-Based Pressure and Strain Sensors for Human Motion Detection. Biosensors, 2022, 12, 187.	2.3	12
35	An open-source camera system for experimental measurements. SoftwareX, 2021, 14, 100688.	1.2	11
36	Tuning the Porosity, Water Interaction, and Redispersion of Nanocellulose Hydrogels by Osmotic Dehydration. ACS Applied Polymer Materials, 2022, 4, 24-28.	2.0	11

Jaana Vapaavuori

#	Article	IF	CITATIONS
37	Multiscale Hierarchical Surface Patterns by Coupling Optical Patterning and Thermal Shrinkage. ACS Applied Materials & Interfaces, 2021, 13, 15563-15571.	4.0	9
38	Controllable Production of Ag/Zn and Ag Particles from Hydrometallurgical Zinc Solutions. ACS Sustainable Chemistry and Engineering, 2021, 9, 8186-8197.	3.2	9
39	Stability improvement of MAPbI3-based perovskite solar cells using a photoactive solid-solid phase change material. Journal of Alloys and Compounds, 2022, 897, 163142.	2.8	8
40	Taming Macromolecules with Light: Lessons Learned from Vibrational Spectroscopy. Macromolecular Rapid Communications, 2018, 39, 1700430.	2.0	6
41	Dynamically Evolving Surface Patterns through Light-Triggered Wrinkling Erasure. Langmuir, 2019, 35, 875-881.	1.6	6
42	Enhanced nonlinearity by H-bonded polymer–dye complex in liquid crystal for holographic gratings. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1456.	0.9	4
43	Photocontrol of Supramolecular Azo-Containing Block Copolymer Thin Films during Dip-Coating: Toward Nanoscale Patterned Coatings. ACS Applied Nano Materials, 2019, 2, 3526-3537.	2.4	4
44	Understanding nanodomain morphology formation in dip-coated PS- <i>b</i> -PEO thin films. Nanoscale Advances, 2021, 3, 4996-5007.	2.2	4
45	Transparent conductive electrode based on LBL deposition of graphene oxide and copper nanowires. Materials Letters, 2022, 311, 131632.	1.3	4
46	Photobreathing Zwitterionic Micelles. ChemSystemsChem, 2019, 1, e1900018.	1.1	3
47	Effect of hydrogen-bond strength on photoresponsive properties of polymer-azobenzene complexes. Canadian Journal of Chemistry, 2020, 98, 531-538.	0.6	3
48	Update on women in physics in Finland. AIP Conference Proceedings, 2019, , .	0.3	2
49	Ultrathinâ€Walled 3D Inorganic Nanostructured Networks Templated from Crossâ€Linked Cellulose Nanocrystal Aerogels. Advanced Materials Interfaces, 2021, 8, 2001181.	1.9	2
50	Textile integrable mechanochromic strain sensor based on the interplay of supramolecular interactions. Materials and Design, 2021, 212, 110175.	3.3	2
51	Molecular-Level Photo-Orientation Insights into Macroscopic Photo-Induced Motion in Azobenzene-Containing Polymer Complexes. Journal of Physical Chemistry B, 2021, 125, 7871-7885.	1.2	1
52	Update on women in physics in Finland. AIP Conference Proceedings, 2015, , .	0.3	0
53	Fast formation of a supramolecular ion gel/solvoplastic elastomer with excellent stretchability. Royal Society Open Science, 2018, 5, 180271.	1.1	0
54	Probing interfacial interactions and dynamics of polymers enclosed in boron nitride nanotubes. Journal of Polymer Science, 2022, 60, 233-243.	2.0	0