List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5230613/publications.pdf Version: 2024-02-01

		8159	9553
319	24,036	76	142
papers	citations	h-index	g-index
321	321	321	21406
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Graphene-Like Two-Dimensional Materials. Chemical Reviews, 2013, 113, 3766-3798.	23.0	3,761
2	Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy and Environmental Science, 2020, 13, 635-645.	15.6	636
3	Enhanced Photovoltaic Performance of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer. Journal of the American Chemical Society, 2015, 137, 2674-2679.	6.6	590
4	New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives. ACS Energy Letters, 2020, 5, 1554-1567.	8.8	491
5	Dopant-Free Hole-Transporting Material with a <i>C</i> _{3<i>h</i>} Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 2528-2531.	6.6	446
6	Layerâ€by‣ayer Processed Ternary Organic Photovoltaics with Efficiency over 18%. Advanced Materials, 2021, 33, e2007231.	11.1	438
7	An Unfused oreâ€Based Nonfullerene Acceptor Enables Highâ€Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures. Advanced Materials, 2018, 30, 1705208.	11.1	380
8	Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017, 5, 11462-11482.	5.2	378
9	Highly Efficient Fullerene-Free Organic Solar Cells Operate at Near Zero Highest Occupied Molecular Orbital Offsets. Journal of the American Chemical Society, 2019, 141, 3073-3082.	6.6	362
10	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
11	Simple non-fused electron acceptors for efficient and stable organic solar cells. Nature Communications, 2019, 10, 2152.	5.8	348
12	A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy and Environmental Science, 2016, 9, 604-610.	15.6	347
13	Orientation Regulation of Phenylethylammonium Cation Based 2D Perovskite Solar Cell with Efficiency Higher Than 11%. Advanced Energy Materials, 2018, 8, 1702498.	10.2	313
14	Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy and Environmental Science, 2022, 15, 2537-2544.	15.6	311
15	Antibacterial activity of two-dimensional MoS ₂ sheets. Nanoscale, 2014, 6, 10126-10133.	2.8	310
16	Precisely Controlling the Position of Bromine on the End Group Enables Wellâ€Regular Polymer Acceptors for Allâ€Polymer Solar Cells with Efficiencies over 15%. Advanced Materials, 2020, 32, e2005942.	11.1	282
17	Transparent electrodes for organic optoelectronic devices: a review. Journal of Photonics for Energy, 2014, 4, 040990.	0.8	249
18	Asymmetric Electron Acceptors for Highâ€Efficiency and Lowâ€Energy‣oss Organic Photovoltaics. Advanced Materials, 2020, 32, e2001160.	11.1	246

#	Article	IF	CITATIONS
19	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	11.7	228
20	Efficient Organic Solar Cells with Nonâ€Fullerene Acceptors. Small, 2017, 13, 1701120.	5.2	216
21	Vertically Oriented 2D Layered Perovskite Solar Cells with Enhanced Efficiency and Good Stability. Small, 2017, 13, 1700611.	5.2	212
22	Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule, 2022, 6, 662-675.	11.7	212
23	Molecular Engineered Holeâ€Extraction Materials to Enable Dopantâ€Free, Efficient pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700012.	10.2	195
24	Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors. Chemistry of Materials, 2018, 30, 5429-5434.	3.2	194
25	Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. Journal of Materials Chemistry A, 2018, 6, 11063-11077.	5.2	183
26	Simple Nonâ€Fused Electron Acceptors Leading to Efficient Organic Photovoltaics. Angewandte Chemie - International Edition, 2021, 60, 12964-12970.	7.2	172
27	High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule, 2021, 5, 945-957.	11.7	171
28	Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO ₂ and surface hydrophobization. Science and Technology of Advanced Materials, 2008, 9, 035001.	2.8	167
29	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
30	Engineering crystalline structures of two-dimensional MoS ₂ sheets for high-performance organic solar cells. Journal of Materials Chemistry A, 2014, 2, 7727-7733.	5.2	142
31	Spiro Linkage as an Alternative Strategy for Promising Nonfullerene Acceptors in Organic Solar Cells. Advanced Functional Materials, 2015, 25, 5954-5966.	7.8	140
32	Highâ€Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and Seeâ€Through Functions. Advanced Materials, 2020, 32, e2001621.	11.1	140
33	Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. Journal of Materials Chemistry A, 2015, 3, 24254-24260.	5.2	133
34	Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process. Journal of Materials Chemistry A, 2016, 4, 9430-9436.	5.2	130
35	Manipulating the Mixedâ€Perovskite Crystallization Pathway Unveiled by In Situ GIWAXS. Advanced Materials, 2019, 31, e1901284.	11.1	127
36	Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. Journal of the American Chemical Society, 2021, 143, 18052-18060.	6.6	127

#	Article	IF	CITATIONS
37	Hierarchical architecture of WS ₂ nanosheets on graphene frameworks with enhanced electrochemical properties for lithium storage and hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 24128-24138.	5.2	126
38	Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers. Advanced Materials, 2017, 29, 1606729.	11.1	124
39	Highly Efficient Sn/Pb Binary Perovskite Solar Cell via Precursor Engineering: A Twoâ€Step Fabrication Process. Advanced Functional Materials, 2019, 29, 1807024.	7.8	122
40	Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 12132-12141.	5.2	119
41	C–H activation: making diketopyrrolopyrrole derivatives easily accessible. Journal of Materials Chemistry A, 2013, 1, 2795.	5.2	118
42	The Second Spacer Cation Assisted Growth of a 2D Perovskite Film with Oriented Large Grain for Highly Efficient and Stable Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 9409-9413.	7.2	118
43	Highâ€Performance Thickness Insensitive Perovskite Solar Cells with Enhanced Moisture Stability. Advanced Energy Materials, 2018, 8, 1800438.	10.2	118
44	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
45	Nearâ€Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells. Advanced Materials, 2018, 30, e1803769.	11.1	116
46	Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nature Communications, 2022, 13, 2598.	5.8	113
47	Solutionâ€Grown Organic Singleâ€Crystalline pâ€n Junctions with Ambipolar Charge Transport. Advanced Materials, 2013, 25, 5762-5766.	11.1	112
48	Molecular electron acceptors for efficient fullerene-free organic solar cells. Physical Chemistry Chemical Physics, 2017, 19, 3440-3458.	1.3	112
49	Au nanoparticles on ultrathin MoS ₂ sheets for plasmonic organic solar cells. Journal of Materials Chemistry A, 2014, 2, 14798-14806.	5.2	110
50	A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 10659-10665.	5.2	110
51	Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 2873-2878.	6.6	106
52	Nonfullerene Tandem Organic Solar Cells with High Open ircuit Voltage of 1.97 V. Advanced Materials, 2016, 28, 9729-9734.	11.1	104
53	A Lowâ€Temperature, Solutionâ€Processable Organic Electronâ€Transporting Layer Based on Planar Coronene for Highâ€performance Conventional Perovskite Solar Cells. Advanced Materials, 2016, 28, 10786-10793.	11.1	102
54	Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells. Energy and Environmental Science, 2015, 8, 1712-1718.	15.6	101

#	Article	IF	CITATIONS
55	Dilution effect for highly efficient multiple-component organic solar cells. Nature Nanotechnology, 2022, 17, 53-60.	15.6	99
56	Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics. Nature Communications, 2021, 12, 4627.	5.8	98
57	A non-fullerene acceptor with a fully fused backbone for efficient polymer solar cells with a high open-circuit voltage. Journal of Materials Chemistry A, 2016, 4, 14983-14987.	5.2	97
58	Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nature Communications, 2021, 12, 3049.	5.8	97
59	Preparation of superhydrophobic surfaces on cotton textiles. Science and Technology of Advanced Materials, 2008, 9, 035008.	2.8	95
60	Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV. Materials Chemistry Frontiers, 2018, 2, 121-128.	3.2	95
61	Graphene uniformly decorated with gold nanodots: in situ synthesis, enhanced dispersibility and applications. Journal of Materials Chemistry, 2011, 21, 8096.	6.7	93
62	A Nearâ€Infrared Photoactive Morphology Modifier Leads to Significant Current Improvement and Energy Loss Mitigation for Ternary Organic Solar Cells. Advanced Science, 2018, 5, 1800755.	5.6	93
63	Semitransparent Organic Solar Cells with Vivid Colors. ACS Energy Letters, 2020, 5, 3115-3123.	8.8	93
64	Near-Infrared Electron Acceptors with Unfused Architecture for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 16700-16706.	4.0	93
65			

#	Article	IF	CITATIONS
73	Energy-level modulation of non-fullerene acceptors to achieve high-efficiency polymer solar cells at a diminished energy offset. Journal of Materials Chemistry A, 2017, 5, 9649-9654.	5.2	83
74	Preparation of Singleâ€Crystalline Heterojunctions for Organic Electronics. Advanced Materials, 2017, 29, 1606101.	11.1	82
75	A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics. Advanced Science, 2015, 2, 1500014.	5.6	79
76	A solution-processable bipolar diketopyrrolopyrrole molecule used as both electron donor and acceptor for efficient organic solar cells. Journal of Materials Chemistry A, 2015, 3, 1902-1905.	5.2	79
77	Visibleâ€Light Ultrasensitive Solutionâ€Prepared Layered Organic–Inorganic Hybrid Perovskite Fieldâ€Effect Transistor. Advanced Optical Materials, 2017, 5, 1600539.	3.6	78
78	A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells. Journal of Materials Chemistry A, 2016, 4, 3777-3783.	5.2	77
79	Nearâ€Infrared Nonfullerene Acceptors Based on Benzobis(thiazole) Unit for Efficient Organic Solar Cells with Low Energy Loss. Small Methods, 2019, 3, 1900531.	4.6	76
80	Solution-processed CuO as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells. Chinese Chemical Letters, 2017, 28, 13-18.	4.8	74
81	Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer. Solar Energy Materials and Solar Cells, 2015, 140, 396-404.	3.0	72
82	Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale, 2019, 11, 20123-20132.	2.8	72
83	Functionalizing Single Crystals: Incorporation of Nanoparticles Inside Gelâ€Grown Calcite Crystals. Angewandte Chemie - International Edition, 2014, 53, 4127-4131.	7.2	69
84	Toward Highly Efficient Largeâ€Area ITOâ€Free Organic Solar Cells with a Conductanceâ€Gradient Transparent Electrode. Advanced Materials, 2015, 27, 6983-6989.	11.1	67
85	Polymer Modification on the NiO _{<i>x</i>} Hole Transport Layer Boosts Open-Circuit Voltage to 1.19 V for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 46340-46347.	4.0	67
86	Mitigating the Lead Leakage of High-Performance Perovskite Solar Cells via In Situ Polymerized Networks. ACS Energy Letters, 2021, 6, 3443-3449.	8.8	67
87	Design of Non-fused Ring Acceptors toward High-Performance, Stable, and Low-Cost Organic Photovoltaics. Accounts of Materials Research, 2022, 3, 644-657.	5.9	66
88	Solutionâ€Grown Organic Singleâ€Crystalline Donor–Acceptor Heterojunctions for Photovoltaics. Angewandte Chemie - International Edition, 2015, 54, 956-960.	7.2	65
89	Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues. Materials Horizons, 2016, 3, 119-123.	6.4	64
90	Donor–Acceptor Conjugated Macrocycles: Synthesis and Host–Guest Coassembly with Fullerene toward Photovoltaic Application. ACS Nano, 2017, 11, 11701-11713.	7.3	64

#	Article	IF	CITATIONS
91	An ester-functionalized diketopyrrolopyrrole molecule with appropriate energy levels for application in solution-processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 105-111.	5.2	63
92	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie - International Edition, 2021, 60, 10806-10813.	7.2	63
93	Star-Shaped D–A Small Molecules Based on Diketopyrrolopyrrole and Triphenylamine for Efficient Solution-Processed Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 972-980.	4.0	62
94	Boosting Organic–Metal Oxide Heterojunction via Conjugated Small Molecules for Efficient and Stable Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2019, 9, 1900887.	10.2	62
95	Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device. Energy and Environmental Science, 2022, 15, 855-865.	15.6	62
96	Compromising Charge Generation and Recombination with Asymmetric Molecule for Highâ€Performance Binary Organic Photovoltaics with Over 18% Certified Efficiency. Advanced Functional Materials, 2022, 32, .	7.8	62
97	Ultra-stable two-dimensional MoS ₂ solution for highly efficient organic solar cells. RSC Advances, 2014, 4, 32744-32748.	1.7	61
98	Non-fullerene Acceptors with a Thieno[3,4-c]pyrrole-4,6-dione (TPD) Core for Efficient Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1005-1014.	2.0	61
99	Electron acceptors with varied linkages between perylene diimide and benzotrithiophene for efficient fullerene-free solar cells. Journal of Materials Chemistry A, 2017, 5, 9396-9401.	5.2	60
100	Low-Temperature Solution Processed Utraviolet Photodetector Based on an Ordered TiO ₂ Nanorod Array–Polymer Hybrid. Journal of Physical Chemistry C, 2011, 115, 13438-13445.	1.5	59
101	Ambient roll-to-roll fabrication of flexible solar cells based on small molecules. Journal of Materials Chemistry C, 2013, 1, 8007.	2.7	59
102	Ambipolar charge transport of TIPS-pentacene single-crystals grown from non-polar solvents. Materials Horizons, 2015, 2, 344-349.	6.4	59
103	Highly Efficient Guanidiniumâ€Based Quasi 2D Perovskite Solar Cells via a Two‣tep Postâ€Treatment Process. Small Methods, 2019, 3, 1900375.	4.6	59
104	Achieving efficient organic solar cells and broadband photodetectors via simple compositional tuning of ternary blends. Nano Energy, 2019, 63, 103807.	8.2	59
105	A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 394-400.	2.2	59
106	Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42444-42452.	4.0	58
107	Biomolecule-assisted hydrothermal synthesis of In2S3 porous films and enhanced photocatalytic properties. Journal of Materials Chemistry, 2011, 21, 13327.	6.7	57
108	Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS ₂ for high-performance hydrogen evolution. Nanotechnology, 2014, 25, 465401.	1.3	57

#	Article	IF	CITATIONS
109	A New End Group on Nonfullerene Acceptors Endows Efficient Organic Solar Cells with Low Energy Losses. Advanced Functional Materials, 2022, 32, 2108614.	7.8	56
110	Stable Quasiâ€2D Perovskite Solar Cells with Efficiency over 18% Enabled by Heat–Light Coâ€Treatment. Advanced Functional Materials, 2020, 30, 2004188.	7.8	54
111	Highâ€Performance Semiâ€Transparent Organic Photovoltaic Devices via Improving Absorbing Selectivity. Advanced Energy Materials, 2021, 11, 2003408.	10.2	54
112	ZnO/poly(9,9-dihexylfluorene) based inorganic/organic hybrid ultraviolet photodetector. Applied Physics Letters, 2008, 93, .	1.5	53
113	Enhanced intramolecular charge transfer of unfused electron acceptors for efficient organic solar cells. Materials Chemistry Frontiers, 2019, 3, 513-519.	3.2	53
114	MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar cells. Organic Electronics, 2013, 14, 797-803.	1.4	52
115	Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties. Chemistry of Materials, 2016, 28, 7537-7543.	3.2	52
116	Perovskite/Organic Bulkâ€Heterojunction Integrated Ultrasensitive Broadband Photodetectors with High Nearâ€Infrared External Quantum Efficiency over 70%. Small, 2018, 14, e1802349.	5.2	52
117	Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics. Advanced Materials, 2022, 34, .	11.1	52
118	High-performance see-through power windows. Energy and Environmental Science, 2022, 15, 2629-2637.	15.6	51
119	A Novel Wideâ€Bandgap Polymer with Deep Ionization Potential Enables Exceeding 16% Efficiency in Ternary Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2020, 30, 1910466.	7.8	50
120	Fluoroperylene diimide: a soluble and air-stable electron acceptor. Chemical Communications, 2003, , 1710.	2.2	49
121	Single-crystalline lead halide perovskite arrays for solar cells. Journal of Materials Chemistry A, 2016, 4, 1214-1217.	5.2	49
122	Black Phosphorus Quantum Dots Induced Highâ€Quality Perovskite Film for Efficient and Thermally Stable Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900132.	3.1	49
123	Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells. Journal of Materials Chemistry A, 2020, 8, 18154-18161.	5.2	49
124	Additiveâ€Assisted Hotâ€Casting Free Fabrication of Dion–Jacobson 2D Perovskite Solar Cell with Efficiency Beyond 16%. Solar Rrl, 2020, 4, 2000087.	3.1	49
125	Mitigating Dark Current for High-Performance Near-Infrared Organic Photodiodes via Charge Blocking and Defect Passivation. ACS Applied Materials & Interfaces, 2021, 13, 16766-16774.	4.0	49
126	Interfacing Solutionâ€Grown C ₆₀ and (3â€Pyrrolinium)(CdCl ₃) Single Crystals for Highâ€Mobility Transistorâ€Based Memory Devices. Advanced Materials, 2015, 27, 4476-4480.	11.1	48

#	Article	IF	CITATIONS
127	Low-bandgap mixed tin–lead iodide perovskite with large grains for high performance solar cells. Journal of Materials Chemistry A, 2018, 6, 13090-13095.	5.2	47
128	Solution-grown aligned C60 single-crystals for field-effect transistors. Journal of Materials Chemistry C, 2014, 2, 3617.	2.7	46
129	Enhancement of intra- and inter-molecular π-conjugated effects for a non-fullerene acceptor to achieve high-efficiency organic solar cells with an extended photoresponse range and optimized morphology. Materials Chemistry Frontiers, 2018, 2, 2006-2012.	3.2	46
130	Engineering the underlying surface to manipulate the growth of 2D perovskites for highly efficient solar cells. Journal of Materials Chemistry A, 2019, 7, 14027-14032.	5.2	46
131	Modulate Organicâ€Metal Oxide Heterojunction via [1,6] Azafulleroid for Highly Efficient Organic Solar Cells. Advanced Materials, 2016, 28, 7269-7275.	11.1	45
132	Improved photon-to-electron response of ternary blend organic solar cells with a low band gap polymer sensitizer and interfacial modification. Journal of Materials Chemistry A, 2016, 4, 1702-1707.	5.2	45
133	Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%. Journal of Materials Chemistry A, 2014, 2, 19809-19814.	5.2	44
134	Controlled crystallization of CH3NH3PbI3 films for perovskite solar cells by various PbI2(X) complexes. Solar Energy Materials and Solar Cells, 2016, 155, 331-340.	3.0	43
135	A high-quality round-shaped monolayer MoS ₂ domain and its transformation. Nanoscale, 2016, 8, 219-225.	2.8	43
136	Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 39515-39523.	4.0	43
137	Semiconductive Covalent Organic Frameworks: Structural Design, Synthesis, and Application. Small Structures, 2020, 1, 2000021.	6.9	43
138	Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions. ACS Applied Polymer Materials, 2021, 3, 60-92.	2.0	43
139	High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols. Physical Chemistry Chemical Physics, 2012, 14, 12094.	1.3	42
140	A diketopyrrolopyrrole molecule end-capped with a furan-2-carboxylate moiety: the planarity of molecular geometry and photovoltaic properties. Journal of Materials Chemistry A, 2014, 2, 6589.	5.2	42
141	Preparation of Nano-Structured Polyaniline Composite Film via "Carbon Nanotubes Seeding―Approach and its Gas-Response Studies. Macromolecular Materials and Engineering, 2006, 291, 75-82.	1.7	41
142	Two-dimensional inverted planar perovskite solar cells with efficiency over 15% <i>via</i> solvent and interface engineering. Journal of Materials Chemistry A, 2019, 7, 18980-18986.	5.2	41
143	Marcus Hole Transfer Governs Charge Generation and Device Operation in Nonfullerene Organic Solar Cells. ACS Energy Letters, 2021, 6, 2971-2981.	8.8	41
144	Highâ€Efficiency ITOâ€Free Organic Photovoltaics with Superior Flexibility and Upscalability. Advanced Materials, 2022, 34, e2200044.	11.1	41

#	Article	IF	CITATIONS
145	Incorporation of ester groups into low band-gap diketopyrrolopyrrole containing polymers for solar cell applications. Journal of Materials Chemistry, 2012, 22, 15710.	6.7	40
146	Boosting photovoltaic performance of ternary organic solar cells by integrating a multi-functional guest acceptor. Nano Energy, 2021, 90, 106538.	8.2	40
147	Conformation Locking of Simple Nonfused Electron Acceptors Via Multiple Intramolecular Noncovalent Bonds to Improve the Performances of Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 819-827.	2.5	40
148	Graphene Nucleation Preferentially at Oxygenâ€Rich Cu Sites Rather Than on Pure Cu Surface. Advanced Materials, 2015, 27, 6404-6410.	11.1	39
149	Solutionâ€Grown Organic Singleâ€Crystal Fieldâ€Effect Transistors with Ultrahigh Response to Visibleâ€Blind and Deep UV Signals. Advanced Electronic Materials, 2015, 1, 1500136.	2.6	39
150	An aqueous solution-processed CuO _X film as an anode buffer layer for efficient and stable organic solar cells. Journal of Materials Chemistry A, 2016, 4, 5130-5136.	5.2	39
151	Interfacial engineering enables high efficiency with a high open-circuit voltage above 1.23ÂV in 2D perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 18010-18017.	5.2	39
152	An inverted planar solar cell with 13% efficiency and a sensitive visible light detector based on orientation regulated 2D perovskites. Journal of Materials Chemistry A, 2018, 6, 24633-24640.	5.2	38
153	Conductive fullerene surfactants <i>via</i> anion doping as cathode interlayers for efficient organic and perovskite solar cells. Organic Chemistry Frontiers, 2018, 5, 2845-2851.	2.3	38
154	Toward Highly Thermal Stable Perovskite Solar Cells by Rational Design of Interfacial Layer. IScience, 2019, 22, 534-543.	1.9	38
155	Highâ€Performance Organic Solar Modules via Bilayerâ€Mergedâ€Annealing Assisted Blade Coating. Advanced Materials, 2022, 34, e2110569.	11.1	38
156	Solution-Processed 8-Hydroquinolatolithium as Effective Cathode Interlayer for High-Performance Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 9254-9261.	4.0	37
157	Comparison of additive amount used in spin-coated and roll-coated organic solar cells. Journal of Materials Chemistry A, 2014, 2, 19542-19549.	5.2	36
158	Silver nanowire–graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells. Nanotechnology, 2017, 28, 305402.	1.3	36
159	High efficient UV-A photodetectors based on monodispersed ligand-capped TiO2 nanocrystals and polyfluorene hybrids. Polymer, 2010, 51, 3736-3743.	1.8	35
160	Direct observation of microscopic photoinduced charge redistribution on TiO2 film sensitized by chloroaluminum phthalocyanine and perylenediimide. Applied Physics Letters, 2003, 83, 1896-1898.	1.5	33
161	Three-dimensional molecular donors combined with polymeric acceptors for high performance fullerene-free organic photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 22162-22169.	5.2	33
162	Synergistic Effects of Chlorination and Branched Alkyl Side Chain on the Photovoltaic Properties of Simple Nonâ€Fullerene Acceptors with Quinoxaline as the Core. ChemSusChem, 2021, 14, 3599-3606.	3.6	33

#	Article	IF	CITATIONS
163	Diketo-pyrrolo-pyrrole-Based Medium Band Gap Copolymers for Efficient Plastic Solar Cells: Morphology, Transport, and Composition-Dependent Photovoltaic Behavior. Journal of Physical Chemistry C, 2011, 115, 11282-11292.	1.5	32
164	Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor–acceptor polymers. Journal of Materials Chemistry A, 2013, 1, 1785-1793.	5.2	32
165	Alignment and patterning of organic single crystals for field-effect transistors. Chinese Chemical Letters, 2016, 27, 1421-1428.	4.8	32
166	Achieving high-performance thick-film perovskite solar cells with electron transporting Bingel fullerenes. Journal of Materials Chemistry A, 2018, 6, 15495-15503.	5.2	32
167	Highly efficient and thermal stable guanidinium-based two-dimensional perovskite solar cells via partial substitution with hydrophobic ammonium. Science China Chemistry, 2019, 62, 859-865.	4.2	32
168	Merged interface construction toward ultra-low <i>V</i> _{oc} loss in inverted two-dimensional Dion–Jacobson perovskite solar cells with efficiency over 18%. Journal of Materials Chemistry A, 2021, 9, 12566-12573.	5.2	32
169	Exploring oxygen in graphene chemical vapor deposition synthesis. Nanoscale, 2017, 9, 3719-3735.	2.8	31
170	Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. Nano Research, 2019, 12, 777-783.	5.8	31
171	Organic Heterojunctions Formed by Interfacing Two Single Crystals from a Mixed Solution. Journal of the American Chemical Society, 2019, 141, 10007-10015.	6.6	31
172	Multifunctional semitransparent organic solar cells with excellent infrared photon rejection. Chinese Chemical Letters, 2020, 31, 1608-1611.	4.8	31
173	Electrochemical Synthesis and Charge Transport Properties of CdS Nanocrystalline Thin Films with a Conifer-like Structure. Journal of Physical Chemistry C, 2010, 114, 11911-11917.	1.5	30
174	Improving Polymer/Nanocrystal Hybrid Solar Cell Performance via Tuning Ligand Orientation at CdSe Quantum Dot Surface. ACS Applied Materials & Interfaces, 2014, 6, 19154-19160.	4.0	30
175	Bulk-Heterojunction with Long-Range Ordering: C ₆₀ Single-Crystal with Incorporated Conjugated Polymer Networks. Journal of the American Chemical Society, 2020, 142, 1630-1635.	6.6	30
176	Solvation effect in precursor solution enables over 16% efficiency in thick 2D perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 19423-19429.	5.2	29
177	Universal Bottom Contact Modification with Diverse 2D Spacers for Highâ€Performance Inverted Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2104036.	7.8	29
178	Combining Fusedâ€Ring and Unfusedâ€Core Electron Acceptors Enables Efficient Ternary Organic Solar Cells with Enhanced Fill Factor and Broad Compositional Tolerance. Solar Rrl, 2019, 3, 1900317.	3.1	28
179	Elucidation of Zeroâ€Dimensional to Twoâ€Dimensional Growth Transition in MoS ₂ Chemical Vapor Deposition Synthesis. Advanced Materials Interfaces, 2017, 4, 1600687.	1.9	27
180	Design of wide-bandgap polymers with deeper ionization potential enables efficient ternary non-fullerene polymer solar cells with 13% efficiency. Journal of Materials Chemistry A, 2019, 7, 14153-14162.	5.2	27

#	Article	IF	CITATIONS
181	Influences of Quinoid Structures on Stability and Photovoltaic Performance of Nonfullerene Acceptors. Solar Rrl, 2020, 4, 2000286.	3.1	27
182	Texture design of electrodes for efficiency enhancement of organic solar cells. Journal of Materials Chemistry A, 2013, 1, 2379.	5.2	26
183	A non-fullerene acceptor enables efficient P3HT-based organic solar cells with small voltage loss and thickness insensitivity. Chinese Chemical Letters, 2019, 30, 1277-1281.	4.8	26
184	Narrowband Nearâ€Infrared Photodetector Enabled by Dual Functional Internalâ€Filterâ€Induced Selective Charge Collection. Advanced Optical Materials, 2021, 9, 2100288.	3.6	26
185	Conductive Polymers for Flexible and Stretchable Organic Optoelectronic Applications. ACS Applied Polymer Materials, 2022, 4, 4609-4623.	2.0	26
186	Design and synthesis of dithieno[3,2â€ <i>b</i> :2′3′â€ <i>d</i>]pyrroleâ€based conjugated polymers for photovoltaic applications: consensus between low bandgap and low HOMO energy level. Journal of Polymer Science Part A, 2011, 49, 1453-1461.	2.5	25
187	Roll-coating fabrication of ITO-free flexible solar cells based on a non-fullerene small molecule acceptor. RSC Advances, 2015, 5, 36001-36006.	1.7	25
188	Organic functional materials based buffer layers for efficient perovskite solar cells. Chinese Chemical Letters, 2017, 28, 503-511.	4.8	24
189	High-efficiency organic solar cells with low voltage-loss of 0.46 V. Chinese Chemical Letters, 2020, 31, 1991-1996.	4.8	24
190	Poly(vinyl alcohol)-Encapsulated Hydrophilic Carbon Black Nanoparticles Free from Aggregation. Macromolecular Rapid Communications, 2003, 24, 715-717.	2.0	23
191	Stable titanium dioxide grafted with poly [N-(p-vinyl benzyl) phthalimide] composite particles in suspension for electrophoretic displays. Colloid and Polymer Science, 2011, 289, 401-407.	1.0	23
192	Unique synthesis of graphene-based materials for clean energy and biological sensing applications. Science Bulletin, 2012, 57, 3000-3009.	1.7	23
193	The Second Spacer Cation Assisted Growth of a 2D Perovskite Film with Oriented Large Grain for Highly Efficient and Stable Solar Cells. Angewandte Chemie, 2019, 131, 9509-9513.	1.6	23
194	Tuning interfacial chemical interaction for high-performance perovskite solar cell with PEDOT:PSS as hole transporting layer. Journal of Materials Chemistry A, 2021, 9, 14920-14927.	5.2	23
195	Non-fullerene acceptors with nitrogen-containing six-membered heterocycle cores for the applications in organic solar cells. Solar Energy Materials and Solar Cells, 2021, 225, 111046.	3.0	23
196	Gas-Response Studies of Polyaniline Composite Film Containing Zeolite to Chemical Vapors. Macromolecular Materials and Engineering, 2006, 291, 1539-1546.	1.7	22
197	Preparation and optoelectronic properties of a novel poly(<i>N</i> â€vinylcarbazole) with covalently bonded titanium dioxide. Journal of Applied Polymer Science, 2008, 109, 882-888.	1.3	22
198	Hydrogen bond enables highly efficient and stable two-dimensional perovskite solar cells based on 4-pyridine-ethylamine. Organic Electronics, 2019, 67, 122-127.	1.4	22

#	Article	IF	CITATIONS
199	Intrinsically Chemo- and Thermostable Electron Acceptors for Efficient Organic Solar Cells. Bulletin of the Chemical Society of Japan, 2021, 94, 183-190.	2.0	22
200	CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays. Journal of Materials Chemistry C, 2013, 1, 843-849.	2.7	21
201	From Solid Carbon Sources to Graphene. Chinese Journal of Chemistry, 2016, 34, 32-40.	2.6	21
202	Healing the degradable organic–inorganic heterointerface for highly efficient and stable organic solar cells. InformaÄnÃ-Materiály, 2022, 4, .	8.5	21
203	Manipulating the film morphology evolution toward green solventâ€processed perovskite solar cells. SusMat, 2021, 1, 537-544.	7.8	21
204	Photoinduced Electron Transfer and Enhancement of Photoconductivity in Silicon Nanoparticles/Perylene Diimide Composites in a Polymer Matrix. Journal of Physical Chemistry C, 2008, 112, 15865-15869.	1.5	20
205	Highly efficient hybrid solar cells with tunable dipole at the donor–acceptor interface. Nanoscale, 2014, 6, 10545-10550.	2.8	20
206	Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. Nano Research, 2017, 10, 3765-3774.	5.8	20
207	Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers. Chinese Chemical Letters, 2017, 28, 2121-2124.	4.8	20
208	Enhanced performance of inverted non-fullerene organic solar cells through modifying zinc oxide surface with self-assembled monolayers. Organic Electronics, 2018, 63, 143-148.	1.4	20
209	De Novo Fabrication of Large-Area and Self-Standing Covalent Organic Framework Films for Efficient Separation. ACS Applied Materials & Interfaces, 2021, 13, 44806-44813.	4.0	20
210	Preparation of water soluble poly(aniline) and its gas-sensitivity. Green Chemistry, 2005, 7, 507.	4.6	19
211	Morphology evolution route of PbS crystals via environment-friendly electrochemical deposition. CrystEngComm, 2011, 13, 4689.	1.3	19
212	Gel-incorporated PbS and PbI2 single-crystals. Chinese Chemical Letters, 2015, 26, 504-508.	4.8	19
213	Effect of Solvent-Assisted Nanoscaled Organo-Gels on Morphology and Performance of Organic Solar Cells. Journal of Physical Chemistry C, 2012, 116, 16893-16900.	1.5	18
214	Gel network incorporation into single-crystals: effects of gel structures and crystal–gel interaction. CrystEngComm, 2014, 16, 6901.	1.3	18
215	Recent advances in plasmonic organic photovoltaics. Science China Chemistry, 2015, 58, 210-220.	4.2	18
216	Synthesis and fast transfer of monolayer MoS ₂ on reusable fused silica. Nanoscale, 2017, 9, 6984-6990.	2.8	18

13

#	Article	IF	CITATIONS
217	Design of charge transporting grids for efficient ITO-free flexible up-scaled organic photovoltaics. Materials Chemistry Frontiers, 2017, 1, 304-309.	3.2	18
218	Modulate Molecular Interaction between Hole Extraction Polymers and Lead Ions toward Hysteresisâ€Free and Efficient Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800090.	1.9	18
219	Exploiting Two tep Processed Mixed 2D/3D Perovskites for Bright Green Light Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900465.	3.6	18
220	Simple Nonâ€Fused Electron Acceptors Leading to Efficient Organic Photovoltaics. Angewandte Chemie, 2021, 133, 13074-13080.	1.6	18
221	Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells. Energy and Environmental Science, 2022, 15, 2499-2507.	15.6	18
222	Simply planarizing nonfused perylene diimide based acceptors toward promising non-fullerene solar cells. Journal of Materials Chemistry C, 2019, 7, 8092-8100.	2.7	17
223	Toward Efficient Triple-Junction Polymer Solar Cells through Rational Selection of Middle Cells. ACS Energy Letters, 2020, 5, 1771-1779.	8.8	17
224	Intrinsically Substitutional Carbon Doping in CVD-Grown Monolayer MoS2 and the Band Structure Modulation. ACS Applied Electronic Materials, 2020, 2, 1055-1064.	2.0	17
225	A Benzobis(thiazole)-Based Wide Bandgap Polymer Donor Enables over 15% Efficiency Organic Photovoltaics with a Flat Energetic Offset. Macromolecules, 2021, 54, 7862-7869.	2.2	17
226	Partially reversible photochromic behavior of organic-inorganic perovskites with copper(II) chloride. Journal of Zhejiang University: Science A, 2009, 10, 710-715.	1.3	16
227	Manipulation of optical field distribution in ITO-free micro-cavity polymer tandem solar cells via the out-of-cell capping layer for high photovoltaic performance. Journal of Materials Chemistry A, 2016, 4, 961-968.	5.2	16
228	Improved photovoltaic performance from high quality perovskite thin film grown with the assistance of PC71BM. Chinese Journal of Polymer Science (English Edition), 2017, 35, 309-316.	2.0	16
229	A nuanced approach for assessing OPV materials for large scale applications. Sustainable Energy and Fuels, 2020, 4, 940-949.	2.5	16
230	Self-Assembled Donor–Acceptor Dyad Molecules Stabilize the Heterojunction of Inverted Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces, 2022, 14, 6794-6800.	4.0	16
231	Sb2O3 anode buffer induced morphology improvement in small molecule organic solar cells. Applied Physics Letters, 2011, 99, 183306.	1.5	15
232	Low Cost Universal Highâ€ <i>k</i> Dielectric for Solution Processing and Thermal Evaporation Organic Transistors. Advanced Materials Interfaces, 2014, 1, 1300119.	1.9	15
233	A-D-A small molecule donors based on pyrene and diketopyrrolopyrrole for organic solar cells. Science China Chemistry, 2017, 60, 561-569.	4.2	15
234	Aqueous solutionâ€processed NiO _x anode buffer layers applicable for polymer solar cells. Journal of Polymer Science Part A, 2017, 55, 747-753.	2.5	15

#	Article	IF	CITATIONS
235	Patterning the Internal Structure of Single Crystals by Gel Incorporation. Journal of Physical Chemistry C, 2019, 123, 13147-13153.	1.5	15
236	Electron-deficient core fused-ring based non-Fullerene acceptor enables over 15% efficiency in single junction organic solar cells. Science China Chemistry, 2019, 62, 403-404.	4.2	15
237	<scp>Selfâ€assembled</scp> monolayers for interface engineering in polymer solar cells. Journal of Polymer Science, 2022, 60, 2175-2190.	2.0	15
238	Gas sensing behavior of nano-structured polypyrrole prepared by "carbon nanotubes seeding― approach. Journal of Nanoparticle Research, 2008, 10, 289-296.	0.8	14
239	Microcapsule-based materials for electrophoretic displays. Journal of Materials Research, 2012, 27, 653-662.	1.2	14
240	Design and synthesis of carbonyl group modified conjugated polymers for photovoltaic application. Polymer Bulletin, 2012, 68, 1867-1877.	1.7	14
241	Electron transport in solution-grown TIPS-pentacene single crystals: Effects of gate dielectrics and polar impurities. Chinese Chemical Letters, 2016, 27, 1781-1787.	4.8	14
242	Constructing bulk-contact inside single crystals of organic semiconductors through gel incorporation. CrystEngComm, 2016, 18, 800-806.	1.3	14
243	A non-fullerene electron acceptor with a spirobifluorene core and four diketopyrrolopyrrole arms end capped by 4-fluorobenzene. Dyes and Pigments, 2017, 143, 217-222.	2.0	14
244	Facilitate charge transfer at donor/acceptor interface in bulk heterojunction organic photovoltaics by two-dimensional nanoflakes. Solar Energy Materials and Solar Cells, 2019, 190, 75-82.	3.0	14
245	Synergistic effects of bithiophene ammonium salt for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 9971-9980.	5.2	14
246	Low temperature processed ITO-free perovskite solar cells without a hole transport layer. RSC Advances, 2015, 5, 94752-94758.	1.7	13
247	Electron transport at the interface of organic semiconductors and hydroxyl-containing dielectrics. Journal of Materials Chemistry C, 2018, 6, 12001-12005.	2.7	13
248	Highly efficient perovskite solar cells fabricated by simplified one-step deposition method with non-halogenated anti-solvents. Organic Electronics, 2018, 59, 330-336.	1.4	13
249	Influence of Bridging Groups on the Photovoltaic Properties of Wide-Bandgap Poly(BDTT- <i>alt</i> -BDD)s. ACS Applied Materials & Interfaces, 2019, 11, 1394-1401.	4.0	13
250	Novel cost-effective acceptor:P3HT based organic solar cells exhibiting the highest ever reported industrial readiness factor. Materials Advances, 2020, 1, 658-665.	2.6	13
251	Versatility and robustness of ZnO:Cs electron transporting layer for printable organic solar cells. RSC Advances, 2015, 5, 49369-49375.	1.7	12
252	Visualizing the toughening origins of gel-grown calcite single-crystal composites. Chinese Chemical Letters, 2018, 29, 1666-1670.	4.8	12

#	Article	IF	CITATIONS
253	Snâ€₽b Binary Perovskite Films with High Crystalline Quality for High Performance Solar Cells. Chinese Journal of Chemistry, 2019, 37, 1031-1035.	2.6	12
254	Inverted Perovskite Solar Cells Based on Small Molecular Hole Transport Material C ₈ â€Dioctylbenzothienobenzothiophene. Chinese Journal of Chemistry, 2019, 37, 1239-1244.	2.6	12
255	Highâ€Performance Upscaled Indium Tin Oxide–Free Organic Solar Cells with Visual Esthetics and Flexibility. Solar Rrl, 2021, 5, 2100339.	3.1	12
256	Controllable Anion Doping of Electron Acceptors for High-Efficiency Organic Solar Cells. ACS Energy Letters, 2022, 7, 1764-1773.	8.8	12
257	Preparation and ionic conductivity of solid polymer electrolyte based on polyacrylonitrile-polyethylene oxide. Journal of Applied Polymer Science, 2006, 101, 461-464.	1.3	11
258	Solutionâ€Grown Organic Singleâ€Crystalline Donor–Acceptor Heterojunctions for Photovoltaics. Angewandte Chemie, 2015, 127, 970-974.	1.6	11
259	Pbl ₂ band gap engineering by gel incorporation. Materials Chemistry Frontiers, 2018, 2, 362-368.	3.2	11
260	Additiveâ€Assisted Hotâ€Casting Free Fabrication of Dion–Jacobson 2D Perovskite Solar Cell with Efficiency Beyond 16%. Solar Rrl, 2020, 4, 2070074.	3.1	11
261	Synthesis and photoconductivity study of phthalocyanine polymers. IV. [SiPcNHCH2CH2NH]n. Journal of Polymer Science Part A, 1997, 35, 959-964.	2.5	10
262	Title is missing!. Journal of Materials Science, 2003, 38, 4021-4025.	1.7	10
263	Unusual electrical response of a poly(aniline) composite film on exposure to a basic atmosphere and its application to sensors. Green Chemistry, 2006, 8, 63-69.	4.6	10
264	A facile nanotemplate preparation method for [60]fullerene nanofibres: surface-wetting. Journal of Materials Chemistry, 2008, 18, 4318.	6.7	10
265	Performance enhancement of CdS nanorod arrays/P3HT hybrid solar cells via N719 dye interface modification. Chinese Journal of Polymer Science (English Edition), 2013, 31, 879-884.	2.0	10
266	Synthetic polymer/singleâ€crystal composite. Polymers for Advanced Technologies, 2014, 25, 1189-1194.	1.6	10
267	An Inkâ€Composition Engineering Approach for Upscaling of Organic Solar Cells with Highâ€Efficiency Retention Factor. Solar Rrl, 2020, 4, 2000246.	3.1	10
268	Efficient and stable inverted perovskite solar cells incorporating 4-Fluorobenzylammonium iodide. Organic Electronics, 2021, 92, 106124.	1.4	10
269	Synthesis and photoconductivity study of phthalocyanine polymers. v. 4,4?-diamino-diphenyl ether bridged polymeric SiPc. Journal of Polymer Science Part A, 1997, 35, 91-95.	2.5	9
270	Nonsurfactant synthesis of PbS crystals via electrodeposition and hydrothermal methods: from octahedron to maya-pyramid. CrystEngComm, 2010, 12, 1893.	1.3	9

#	Article	IF	CITATIONS
271	Two-dimensional perovskite solar cells with high luminescence and ultra-low open-circuit voltage deficit. Journal of Materials Chemistry A, 2020, 8, 22175-22180.	5.2	9
272	Nonâ€Halogenated Solvents Processed Efficient ITOâ€Free Flexible Organic Solar Cells with Upscaled Area. Macromolecular Rapid Communications, 2022, 43, e2200049.	2.0	9
273	Oxidative polymerization of pyrrole in the presence of a poly (sodium-p-styrenesulfonate) and its gas-responses. Journal of Materials Science, 2006, 41, 7604-7610.	1.7	8
274	Charge transport at hybrid bulk heterojunction based on CdS nanopillar arrays embedded in a conducting polymer. Journal of Applied Physics, 2009, 106, 073701.	1.1	8
275	Water soluble amino grafted silicon nanoparticles and their use in polymer solar cells. Chinese Journal of Polymer Science (English Edition), 2014, 32, 395-401.	2.0	8
276	Shape change of calcite single crystals to accommodate interfacial curvature: Crystallization in presence of Mg 2+ ions and agarose gel-networks. Chinese Chemical Letters, 2017, 28, 857-862.	4.8	8
277	Enhanced performance of field-effect transistors based on C60 single crystals with conjugated polyelectrolyte. Science China Chemistry, 2017, 60, 490-496.	4.2	8
278	Donor-acceptor (D-A) terpolymers based on alkyl-DPP and t -BocDPP moieties for polymer solar cells. Chinese Chemical Letters, 2017, 28, 2223-2226.	4.8	8
279	Manipulating Perovskite Precursor Solidification toward 21% Pristine MAPbI ₃ Solar Cells. Solar Rrl, 2021, 5, 2100114.	3.1	8
280	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie, 2021, 133, 10901-10908.	1.6	8
281	Improving the device performance of organic solar cells with immiscible solid additives. Journal of Materials Chemistry C, 2022, 10, 2749-2756.	2.7	8
282	A Nanoparticle Approach towards Morphology Controlled Organic Photovoltaics (OPV). Polymers, 2012, 4, 1242-1258.	2.0	7
283	Narrow bandgap semiconducting polymers for solar cells with near-infrared photo response and low energy loss. Tetrahedron Letters, 2017, 58, 2975-2980.	0.7	7
284	Unaxisymmetric Non-Fused Electron Acceptors for Efficient Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 944-950.	2.0	7
285	Microcapsules with compact wall from hydrocarbon/fluorocarbon composite surfactants for electrophoretic display. Science China Chemistry, 2011, 54, 385-391.	4.2	6
286	A novel electrochemically and thermally stable polythiophene for photovoltaic application. Journal of Applied Polymer Science, 2013, 127, 161-168.	1.3	6
287	Improved Photovoltaic Performance of MEHâ€PPV/PCBM Solar Cells via Incorporation of Si Nanocrystals. Chinese Journal of Chemistry, 2013, 31, 1380-1384.	2.6	6
288	Effects of Material Morphology on the Performance of Organic Electronics. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 12-26.	1.9	6

#	Article	IF	CITATIONS
289	Two-step hydrothermal synthesis of sodium tantalate nanoparticles with deep ultraviolet sensitivity. Journal of Materials Chemistry C, 2015, 3, 9346-9352.	2.7	6
290	Assessing the synergy effect of additive and matrix on single-crystal growth: Morphological revolution resulted from gel-mediated enhancement on CIT-calcite interaction. Chinese Chemical Letters, 2018, 29, 1296-1300.	4.8	6
291	Bending TIPS-pentacene single crystals: from morphology to transistor performance. Journal of Materials Chemistry C, 2021, 9, 5621-5627.	2.7	6
292	Recent development of organic electron transport materials*. Progress in Natural Science: Materials International, 2003, 13, 81-87.	1.8	5
293	CNT-based organic-inorganic composite materials with optoelectronic functionality. Research on Chemical Intermediates, 2008, 34, 115-125.	1.3	5
294	Partially crosslinked P(SMAâ€ÐMAâ€St) copolymer <i>in situ</i> modified RGB tricolor pigment particles for chromatic electrophoretic display. Journal of Applied Polymer Science, 2013, 130, 645-653.	1.3	5
295	Polymorphic Phase-Dependent Optical and Electrical Properties of a Diketopyrrolopyrrole-Based Small Molecule. ACS Applied Materials & Interfaces, 2016, 8, 20916-20927.	4.0	5
296	Elucidation of heterogeneous graphene nucleation and growth through Cu surface engineering. Carbon, 2019, 147, 120-125.	5.4	5
297	Non-isothermal crystallization kinetics and rheological behaviors of PBT/PET blends: effects of PET property and nano-silica content. Designed Monomers and Polymers, 2022, 25, 32-46.	0.7	5
298	Crystal growth and characterization of fluorinated perylene diimides. Chemical Research in Chinese Universities, 2014, 30, 63-67.	1.3	4
299	Phosphate ester sideâ€chainâ€modified conjugated polymer for hybrid solar cells. Journal of Applied Polymer Science, 2017, 134, .	1.3	3
300	Special topic on organic and perovskite photovoltaics. Science China Chemistry, 2019, 62, 797-799.	4.2	3
301	Molecular orientation-photoconductivity relationship study of phthalocyanine polymer-oriented thin films. Journal of Applied Polymer Science, 2000, 77, 2331-2339.	1.3	2
302	Synergetic enhancement of photoconductivity in oxotitanium phthalocyanine nanocrystalline/fluoronone-based azo/BAH composite photoreceptors. Progress in Natural Science: Materials International, 2004, 14, 1095-1098.	1.8	2
303	Synthesis of a novel perylene diimide derivative and its charge transfer interaction with C60. Science in China Series B: Chemistry, 2008, 51, 152-157.	0.8	2
304	Tandem Organic Solar Cells: Nonfullerene Tandem Organic Solar Cells with High Open-Circuit Voltage of 1.97 V (Adv. Mater. 44/2016). Advanced Materials, 2016, 28, 9870-9870.	11.1	2
305	Conformation tuning of simple non-fused electron acceptors via oxygen and sulfur substitutions and its effects on photovoltaics. Multifunctional Materials, 2021, 4, 024003.	2.4	2
306	Effect of Aromatic Solvents Residuals on Electron Mobility of Organic Single Crystals. Advanced Electronic Materials, 0, , 2200158.	2.6	2

#	Article	IF	CITATIONS
307	Preparation and photoconductivity study of azo nanoparticles via liquid phase surfactant-assisted reprecipitation. Journal of Materials Science, 2004, 39, 3587-3591.	1.7	1
308	Preparation and optoelectronic properties of N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,l′-biphenyl)-4,4′-diamine/TiO2 nanostructured hybrids. Journ Materials Science, 2008, 43, 1044-1049.	na l.ø f	1
309	An Efficient Tinâ€Free Route to Small Molecules Based on Siloleâ€Modified Pentathiophenes for Solutionâ€Processed Organic Solar Cells. Asian Journal of Organic Chemistry, 2014, 3, 984-993.	1.3	1
310	Photovoltaics: A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics (Adv. Sci. 4/2015). Advanced Science, 2015, 2, .	5.6	1
311	Forum: High Efficiency Polymers for Solar Cell Applications. ACS Applied Polymer Materials, 2021, 3, 1-1.	2.0	1
312	Selection of side groups on simple <scp>nonâ€fullerene</scp> acceptors for the application in organic solar cells: From flexible to rigid. Journal of Polymer Science, 2022, 60, 2343-2351.	2.0	1
313	In-situ fabrication of highly-fluorescent nanohybrids based on Carbon Nanotubes and Gold Nanoparticles. , 2007, , .		0
314	A facile route to synthesize three-dimensional CdS nanocrystals. , 2007, , .		0
315	Electrochemical polyaniline/polypyrrole composite film with novel nanostructure and high biosensitivity. , 2007, , .		0
316	Microcapsule-based materials for electrophoretic displays. Materials Research Society Symposia Proceedings, 2011, 1359, 19.	0.1	0
317	Organic Solar Cells: Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers (Adv. Mater. 19/2017). Advanced Materials, 2017, 29, .	11.1	0
318	Orientation Regulation of 2D Perovskite Solar Cells with Improving Efficiency. , 2020, , .		0
319	Virtual Special Issue: Polymer Materials for Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 57669-57670.	4.0	0