Andrew C Simmonett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5230114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A simplified charge projection scheme for long-range electrostatics in <i>ab initio</i> QM/MM calculations. Journal of Chemical Physics, 2021, 154, 024115.	3.0	18
2	Semi-automated Optimization of the CHARMM36 Lipid Force Field to Include Explicit Treatment of Long-Range Dispersion. Journal of Chemical Theory and Computation, 2021, 17, 1562-1580.	5.3	39
3	A compression strategy for particle mesh Ewald theory. Journal of Chemical Physics, 2021, 154, 054112.	3.0	18
4	Analytical Hessians for Ewald and particle mesh Ewald electrostatics. Journal of Chemical Physics, 2021, 154, 104101.	3.0	8
5	Thermodynamic Decomposition of Solvation Free Energies with Particle Mesh Ewald and Long-Range Lennard-Jones Interactions in Grid Inhomogeneous Solvation Theory. Journal of Chemical Theory and Computation, 2021, 17, 2714-2724.	5.3	19
6	The Extended Eighthâ \in Shell method for periodic boundary conditions with rotational symmetry. Journal of Computational Chemistry, 2021, 42, 1373-1383.	3.3	2
7	Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCE <scp>ngine</scp>): Automation and interoperability among computational chemistry programs. Journal of Chemical Physics, 2021, 155, 204801.	3.0	15
8	P <scp>SI4</scp> 1.4: Open-source software for high-throughput quantum chemistry. Journal of Chemical Physics, 2020, 152, 184108.	3.0	440
9	Interactions of Water and Alkanes: Modifying Additive Force Fields to Account for Polarization Effects. Journal of Chemical Theory and Computation, 2019, 15, 3854-3867.	5.3	25
10	Comparison of Additive and Polarizable Models with Explicit Treatment of Long-Range Lennard-Jones Interactions Using Alkane Simulations. Journal of Chemical Theory and Computation, 2018, 14, 948-958.	5.3	50
11	P <scp>si</scp> 4N <scp>um</scp> P <scp>y</scp> : An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development. Journal of Chemical Theory and Computation, 2018, 14, 3504-3511.	5.3	106
12	An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches. Journal of Chemical Theory and Computation, 2017, 13, 679-695.	5.3	19
13	<scp>Psi4</scp> 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. Journal of Chemical Theory and Computation, 2017, 13, 3185-3197.	5.3	961
14	Mapping the Drude polarizable force field onto a multipole and induced dipole model. Journal of Chemical Physics, 2017, 147, 161702.	3.0	42
15	OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Computational Biology, 2017, 13, e1005659.	3.2	1,561
16	An empirical extrapolation scheme for efficient treatment of induced dipoles. Journal of Chemical Physics, 2016, 145, 164101.	3.0	27
17	Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pK a corrections. Journal of Computer-Aided Molecular Design, 2016, 30, 1087-1100.	2.9	27
18	An efficient protocol for obtaining accurate hydration free energies using quantum chemistry and reweighting from molecular dynamics simulations. Bioorganic and Medicinal Chemistry, 2016, 24, 4988-4997.	3.0	15

#	Article	IF	CITATIONS
19	Calculating distribution coefficients based on multi-scale free energy simulations: an evaluation of MM and QM/MM explicit solvent simulations of water-cyclohexane transfer in the SAMPL5 challenge. Journal of Computer-Aided Molecular Design, 2016, 30, 989-1006.	2.9	24
20	Molecular Multipole Potential Energy Functions for Water. Journal of Physical Chemistry B, 2016, 120, 1833-1842.	2.6	10
21	Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method. Journal of Chemical Theory and Computation, 2016, 12, 332-344.	5.3	42
22	Efficient treatment of induced dipoles. Journal of Chemical Physics, 2015, 143, 074115.	3.0	38
23	Numerical Study on the Partitioning of the Molecular Polarizability into Fluctuating Charge and Induced Atomic Dipole Contributions. Journal of Physical Chemistry A, 2015, 119, 5865-5882.	2.5	44
24	Quantum Mechanical Molecular Mechanical Calculations using AMOEBA Force Fields. Biophysical Journal, 2015, 108, 158a.	0.5	1
25	An efficient algorithm for multipole energies and derivatives based on spherical harmonics and extensions to particle mesh Ewald. Journal of Chemical Physics, 2014, 140, 184101.	3.0	43
26	New Potential Energy Surface Features for the Li + HF → LiF + H Reaction. Journal of Physical Chemistry A, 2013, 117, 10027-10033.	2.5	10
27	Density cumulant functional theory: The DC-12 method, an improved description of the one-particle density matrix. Journal of Chemical Physics, 2013, 138, 024107.	3.0	17
28	Anharmonic vibrational analyses for the 1-silacyclopropenylidene molecule and its three isomers. Molecular Physics, 2012, 110, 783-800.	1.7	5
29	Analytic gradients for density cumulant functional theory: The DCFT-06 model. Journal of Chemical Physics, 2012, 137, 054105.	3.0	18
30	1-Germavinylidene (Geâ•€H ₂), Germyne (HGeCH), and 2-Germavinylidene (H ₂ Geâ•€) Molecules and Isomerization Reactions among Them: Anharmonic Rovibrational Analyses. Journal of Physical Chemistry A, 2012, 116, 4578-4589.	2.5	7
31	Characterization of the <i>t</i> -Butyl Radical and Its Elusive Anion. Journal of Chemical Theory and Computation, 2012, 8, 4323-4329.	5.3	5
32	Psi4: an openâ€source <i>ab initio</i> electronic structure program. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 556-565.	14.6	838
33	Fundamental vibrational frequencies and spectroscopic constants for the methylperoxyl radical, CH ₃ O ₂ , and related isotopologues ¹³ CH ₃ OO, CH ₃ ¹⁸ O ¹⁸ O, and CD ₃ OO. Molecular Physics, 2012, 110, 2419-2427.	1.7	13
34	The Beryllium Pentamer: Trailing an Uneven Sequence of Dissociation Energies. ChemPhysChem, 2012, 13, 1255-1260.	2.1	5
35	The benzene+OH potential energy surface: intermediates and transition states. Physical Chemistry Chemical Physics, 2011, 13, 2214-2221.	2.8	28
36	Combustion Chemistry: Important Features of the C ₃ H ₅ Potential Energy Surface, Including Allyl Radical, Propargyl + H ₂ , Allene + H, and Eight Transition States. Journal of Physical Chemistry A, 2011, 115, 14209-14214.	2.5	25

ANDREW C SIMMONETT

#	Article	IF	CITATIONS
37	Toward Functional Ni-SOD Biomimetics: Achieving a Structural/Electronic Correlation with Redox Dynamics. Inorganic Chemistry, 2011, 50, 9216-9218.	4.0	32
38	From acetylene complexes to vinylidene structures: The GeC ₂ H ₂ system. Journal of Computational Chemistry, 2011, 32, 15-22.	3.3	3
39	Silacyclopropenylidene and Its Most Important SiC ₂ H ₂ Isomers. Journal of Physical Chemistry C, 2010, 114, 5447-5457.	3.1	13
40	Reactions between Resonance-Stabilized Radicals: Propargyl + Allyl. Journal of Physical Chemistry A, 2010, 114, 4881-4890.	2.5	84
41	Low-Lying Triplet States of Diphosphene and Diphosphinylidene. Journal of Physical Chemistry A, 2010, 114, 10850-10856.	2.5	7
42	Characterization of the BNNO Radical. Journal of Chemical Theory and Computation, 2010, 6, 1915-1923.	5.3	1
43	Exploring the Effects of H-Bonding in Synthetic Analogues of Nickel Superoxide Dismutase (Ni-SOD): Experimental and Theoretical Implications for Protection of the Niâ^'SCys Bond. Inorganic Chemistry, 2010, 49, 7080-7096.	4.0	43
44	Anharmonic Vibrational Analysis for the Propadienylidene Molecule (H2C╀╀:). Journal of Chemical Theory and Computation, 2010, 6, 3122-3130.	5.3	4
45	Density cumulant functional theory: First implementation and benchmark results for the DCFT-06 model. Journal of Chemical Physics, 2010, 133, 174122.	3.0	26
46	Diphosphene and Diphosphinylidene. Journal of Physical Chemistry A, 2009, 113, 13227-13236.	2.5	14
47	Structures and Energetics of H6+ Clusters. Journal of Physical Chemistry A, 2009, 113, 13608-13620.	2.5	6
48	Water Dimer Radical Cation: Structures, Vibrational Frequencies, and Energetics. Journal of Physical Chemistry A, 2009, 113, 13779-13789.	2.5	63
49	Barrier To Linearity and Anharmonic Force Field of the Ketenyl Radical. Journal of Physical Chemistry A, 2009, 113, 11643-11650.	2.5	12
50	Enthalpy of formation and anharmonic force field of diacetylene. Journal of Chemical Physics, 2009, 130, 044301.	3.0	41
51	A companion perturbation theory for state-specific multireference coupled cluster methods. Physical Chemistry Chemical Physics, 2009, 11, 4728.	2.8	65
52	Infrared signatures of the NCCO radical. Physical Chemistry Chemical Physics, 2009, 11, 10385.	2.8	13
53	Capture of hydroxymethylene and its fast disappearance through tunnelling. Nature, 2008, 453, 906-909.	27.8	264
54	Anchoring the Absolute Proton Affinity Scale. Journal of Chemical Theory and Computation, 2008, 4, 1220-1229.	5.3	42

#	Article	IF	CITATIONS
55	π and σ-Phenylethynyl Radicals and Their Isomers <i>o-</i> , <i>m-</i> , and <i>p-</i> Ethynylphenyl: Structures, Energetics, and Electron Affinities. Journal of Physical Chemistry A, 2008, 112, 2838-2845.	2.5	5
56	Triple excitations in state-specific multireference coupled cluster theory: Application of Mk-MRCCSDT and Mk-MRCCSDT-n methods to model systems. Journal of Chemical Physics, 2008, 128, 124104.	3.0	123
57	In search of definitive signatures of the elusive NCCO radical. Journal of Chemical Physics, 2007, 127, 014306.	3.0	19
58	Rennerâ^'Teller Bending Frequencies of the à 2Î State of OCS+. Journal of Physical Chemistry A, 2007, 111, 4551-4555.	2.5	5
59	Popular Theoretical Methods Predict Benzene and Arenes To Be Nonplanar. Journal of the American Chemical Society, 2006, 128, 9342-9343.	13.7	238
60	Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 2006, 8, 3172-3191.	2.8	2,597
61	An optimal point-charge model for molecular electrostatic potentials. Molecular Physics, 2005, 103, 2789-2793.	1.7	15
62	The Vinyl Radical and Fluorinated Vinyl Radicals, C2H3-nFn (n = 0â^'3), and Corresponding Anions: Comparison with the Isoelectronic Complexes [X··À·YC≡CZ] Journal of Physical Chemistry A, 2004, 108, 1608-1615.	2.5	12

5