

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5230097/publications.pdf Version: 2024-02-01

Μικιλλμι

#	Article	IF	CITATIONS
1	Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Photoacoustics, 2014, 2, 12-20.	7.8	120
2	Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second. Biomedical Optics Express, 2017, 8, 943.	2.9	80
3	Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis. Journal of Biomedical Optics, 2014, 19, 026006.	2.6	63
4	Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging. Optics Express, 2013, 21, 21472.	3.4	60
5	Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. Biomedical Optics Express, 2015, 6, 3276.	2.9	58
6	Frequency Analysis of the Photoacoustic Signal Generated by Coronary Atherosclerotic Plaque. Ultrasound in Medicine and Biology, 2016, 42, 2017-2025.	1.5	24
7	Emerging Technology Update Intravascular Photoacoustic Imaging of Vulnerable Atherosclerotic Plaque. Interventional Cardiology Review, 2016, 11, 120.	1.6	20
8	A Broadband Polyvinylidene Difluoride-Based Hydrophone with Integrated Readout Circuit for Intravascular Photoacoustic Imaging. Ultrasound in Medicine and Biology, 2016, 42, 1239-1243.	1.5	17
9	Towards in vivo photoacoustic imaging of vulnerable plaques in the carotid artery. Biomedical Optics Express, 2021, 12, 4207.	2.9	17
10	Thermo-elastic optical coherence tomography. Optics Letters, 2017, 42, 3466.	3.3	16
11	Impact of device geometry on the imaging characteristics of an intravascular photoacoustic catheter. Applied Optics, 2014, 53, 8131.	2.1	15
12	Advanced Ultrasound and Photoacoustic Imaging in Cardiology. Sensors, 2021, 21, 7947.	3.8	15
13	In vivo intravascular photoacoustic imaging of plaque lipid in coronary atherosclerosis. EuroIntervention, 2019, 15, 452-456.	3.2	14
14	Catheter design optimization for practical intravascular photoacoustic imaging (IVPA) of vulnerable plaques. , 2018, , .		2
15	SVD-based filtering to detect intraplaque hemorrhage using single wavelength photoacoustic imaging. Journal of Biomedical Optics, 2021, 26, .	2.6	2
16	Automatic lipid detection in human coronary atherosclerosis using spectroscopic intravascular photoacoustic imaging. , 2012, , .		0
17	Detecting Cardiac Infarction Risk Reliably Using Fast Laser Pulses. Optik & Photonik, 2017, 12, 26-29.	0.2	0