
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5229642/publications.pdf Version: 2024-02-01

MIHALY HODANYL

#	Article	IF	CITATIONS
1	CHARGED DUST DYNAMICS IN THE SOLAR SYSTEM. Annual Review of Astronomy and Astrophysics, 1996, 34, 383-418.	24.3	541
2	The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350, aad1815.	12.6	407
3	Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature, 1993, 362, 428-430.	27.8	388
4	Ongoing hydrothermal activities within Enceladus. Nature, 2015, 519, 207-210.	27.8	382
5	Lunar surface: Dust dynamics and regolith mechanics. Reviews of Geophysics, 2007, 45, .	23.0	272
6	Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere. Nature, 1993, 363, 144-146.	27.8	260
7	The Cassini Cosmic Dust Analyzer. Space Science Reviews, 2004, 114, 465-518.	8.1	230
8	The geology of Pluto and Charon through the eyes of New Horizons. Science, 2016, 351, 1284-1293.	12.6	219
9	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	12.6	201
10	Charging of Dust Grains in Plasma with Energetic Electrons. Physical Review Letters, 1995, 75, 838-841.	7.8	198
11	The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 289-299.	1.6	179
12	A permanent, asymmetric dust cloud around the Moon. Nature, 2015, 522, 324-326.	27.8	174
13	The dynamics of Saturn's E ring particles. Icarus, 1992, 97, 248-259.	2.5	135
14	Dust charging and transport on airless planetary bodies. Geophysical Research Letters, 2016, 43, 6103-6110.	4.0	130
15	Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission. Space Science Reviews, 2018, 214, 1.	8.1	129
16	Trajectories of charged dust grains in the cometary environment. Astrophysical Journal, 1985, 294, 357.	4.5	123
17	Dusty plasma effects in Saturn's magnetosphere. Reviews of Geophysics, 2004, 42, .	23.0	121
18	The effects of electrostatic charging on the dust distribution at Halley's Comet. Astrophysical Journal, 1986, 307, 800.	4.5	121

#	Article	IF	CITATIONS
19	Photoelectric Charging of Dust Particles in Vacuum. Physical Review Letters, 2000, 84, 6034-6037.	7.8	118
20	Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science, 2019, 363, 955-959.	12.6	116
21	Dust transport in photoelectron layers and the formation of dust ponds on Eros. Icarus, 2005, 175, 159-169.	2.5	115
22	Simulations of the photoelectron sheath and dust levitation on the lunar surface. Journal of Geophysical Research, 2010, 115, .	3.3	114
23	Experimental investigations on photoelectric and triboelectric charging of dust. Journal of Geophysical Research, 2001, 106, 8343-8356.	3.3	113
24	Initial results from the New Horizons exploration of 2014 MU ₆₉ , a small Kuiper Belt object. Science, 2019, 364, .	12.6	113
25	Coagulation of dust particles in a plasma. Astrophysical Journal, 1990, 361, 155.	4.5	111
26	Gas dynamic heating of chondrule precursor grains in the solar nebula. Icarus, 1991, 93, 259-269.	2.5	110
27	Sublimation and reformation of Icy grains in the primitive solar nebula. Icarus, 1991, 94, 333-344.	2.5	104
28	Measurement of the charging of individual dust grains in a plasma. IEEE Transactions on Plasma Science, 1994, 22, 97-102.	1.3	97
29	The Lunar Dust Experiment (LDEX) Onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission. Space Science Reviews, 2014, 185, 93-113.	8.1	97
30	The lunar dust environment. Planetary and Space Science, 2011, 59, 1672-1680.	1.7	96
31	South–North and Radial Traverses through the Interplanetary Dust Cloud. Icarus, 1997, 129, 270-288.	2.5	94
32	Electrostatic charging properties of Apollo 17 lunar dust. Journal of Geophysical Research, 1998, 103, 8575-8580.	3.3	88
33	Contact charging of lunar and Martian dust simulants. Journal of Geophysical Research, 2002, 107, 15-1-15-8.	3.3	88
34	The dynamics of charged dust in the tail of comet Giacobiniâ€Zinner. Journal of Geophysical Research, 1986, 91, 355-361.	3.3	87
35	The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport. Icarus, 2012, 221, 135-146.	2.5	85
36	lo as a source of the jovian dust streams. Nature, 2000, 405, 48-50.	27.8	84

#	Article	IF	CITATIONS
37	Variability of the lunar photoelectron sheath and dust mobility due to solar activity. Journal of Geophysical Research, 2008, 113, .	3.3	84
38	High-velocity streams of dust originating from Saturn. Nature, 2005, 433, 289-291.	27.8	83
39	The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	12.6	76
40	The electrostatic potential of E ring particles. Planetary and Space Science, 2006, 54, 999-1006.	1.7	74
41	New Horizons: Anticipated Scientific Investigations atÂtheÂPluto System. Space Science Reviews, 2008, 140, 93-127.	8.1	74
42	The Nebular Shock Wave Model for Chondrule Formation: One-Dimensional Calculations. Icarus, 1993, 106, 179-189.	2.5	73
43	Experimental levitation of dust grains in a plasma sheath. Journal of Geophysical Research, 2002, 107, SMP 37-1.	3.3	73
44	Global Dynamics of Charged Dust Particles in Planetary Magnetospheres. Physical Review Letters, 1999, 83, 3993-3996.	7.8	71
45	Charged nanograins in the Enceladus plume. Journal of Geophysical Research, 2012, 117, .	3.3	71
46	The friable sponge model of a cometary nucleus. Astrophysical Journal, 1984, 278, 449.	4.5	70
47	Lunar Dust Levitation. Journal of Aerospace Engineering, 2009, 22, 2-9.	1.4	69
48	Dust streams from Jupiter and Saturn. Physics of Plasmas, 2000, 7, 3847.	1.9	68
49	3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies. Review of Scientific Instruments, 2012, 83, 075108.	1.3	66
50	The Lunar Atmosphere and Dust Environment Explorer Mission. Space Science Reviews, 2014, 185, 3-25.	8.1	66
51	Meteoric smoke production in the atmosphere. Geophysical Research Letters, 2000, 27, 3293-3296.	4.0	65
52	HST far-ultraviolet imaging of Jupiter during the impacts of comet Shoemaker-Levy 9. Science, 1995, 267, 1302-1307.	12.6	64
53	Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	12.6	64
54	Constraints from Galileo observations on the origin of jovian dust streams. Nature, 1996, 381, 395-398.	27.8	62

#	Article	IF	CITATIONS
55	The Student Dust Counter on the New Horizons Mission. Space Science Reviews, 2008, 140, 387-402.	8.1	62
56	Charged dust in the Earth's magnetosphere. Astrophysics and Space Science, 1988, 144, 215-229.	1.4	61
57	The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study. Monthly Notices of the Royal Astronomical Society, 2016, 462, S220-S234.	4.4	60
58	Pluto's interaction with its space environment: Solar wind, energetic particles, and dust. Science, 2016, 351, aad9045.	12.6	60
59	Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument. Geophysical Research Letters, 2014, 41, 266-272.	4.0	59
60	The dusty ballerina skirt of Jupiter. Journal of Geophysical Research, 1993, 98, 21245-21251.	3.3	56
61	Galileo observes electromagnetically coupled dust in the Jovian magnetosphere. Journal of Geophysical Research, 1998, 103, 20011-20022.	3.3	56
62	Saturn's Spokes: Lost and Found. Science, 2006, 311, 1587-1589.	12.6	56
63	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	1.7	56
64	Largeâ€scale structure of Saturn's Eâ€ring. Geophysical Research Letters, 2008, 35, .	4.0	53
65	DUSTY PLASMA EFFECTS IN COMETS: EXPECTATIONS FOR ROSETTA. Reviews of Geophysics, 2013, 51, 53-75.	23.0	52
66	Electron and Ion Dynamics of the Solar Wind Interaction with a Weakly Outgassing Comet. Physical Review Letters, 2017, 118, 205101.	7.8	52
67	Chondrule Formation in Lightning Discharges. Icarus, 1995, 114, 174-185.	2.5	51
68	Mass analysis of charged aerosol particles in NLC and PMSE during the ECOMA/MASS campaign. Annales Geophysicae, 2009, 27, 1213-1232.	1.6	51
69	The search for electrostatically lofted grains above the Moon with the Lunar Dust Experiment. Geophysical Research Letters, 2015, 42, 5141-5146.	4.0	51
70	Simulation of rocket-borne particle measurements in the mesosphere. Geophysical Research Letters, 1999, 26, 1537-1540.	4.0	50
71	Stability of Halo Orbits. Physical Review Letters, 2000, 84, 3244-3247.	7.8	50
72	In situ dust measurements in the inner Saturnian system. Planetary and Space Science, 2006, 54, 967-987.	1.7	50

#	Article	IF	CITATIONS
73	Negative potentials above the day-side lunar surface in the terrestrial plasma sheet: Evidence of non-monotonic potentials. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	50
74	Meteoroids at the Moon: Orbital Properties, Surface Vaporization, and Impact Ejecta Production. Journal of Geophysical Research E: Planets, 2019, 124, 752-778.	3.6	49
75	Toward understanding the fate of dust lost from the Martian satellites. Geophysical Research Letters, 1990, 17, 853-856.	4.0	48
76	Charged dust dynamics: Orbital resonance due to planetary shadows. Journal of Geophysical Research, 1991, 96, 19283-19289.	3.3	47
77	Grainâ€scale supercharging and breakdown on airless regoliths. Journal of Geophysical Research E: Planets, 2016, 121, 2150-2165.	3.6	47
78	The charge state of electrostatically transported dust on regolith surfaces. Geophysical Research Letters, 2017, 44, 3059-3065.	4.0	47
79	Capture of Interplanetary and Interstellar Dust by the Jovian Magnetosphere. Science, 1998, 280, 88-91.	12.6	46
80	Charging of dust particles on surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2533-2541.	2.1	46
81	Lunar meteoritic gardening rate derived from in situ LADEE/LDEX measurements. Geophysical Research Letters, 2016, 43, 4893-4898.	4.0	46
82	The structure and dynamics of Jupiter's ring. Nature, 1996, 381, 293-295.	27.8	45
83	Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies. Physical Review Letters, 2014, 112, 151102.	7.8	45
84	Modeling the Galileo dust measurements at Jupiter. Geophysical Research Letters, 1997, 24, 2175-2178.	4.0	44
85	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	27.8	44
86	In situ collection of dust grains falling from Saturn's rings into its atmosphere. Science, 2018, 362, .	12.6	44
87	Jovian dust streams: A monitor of Io's volcanic plume activity. Geophysical Research Letters, 2003, 30, .	4.0	43
88	General mechanism and dynamics of the solar wind interaction with lunar magnetic anomalies from 3â€D particleâ€inâ€cell simulations. Journal of Geophysical Research: Space Physics, 2015, 120, 6443-6463.	2.4	43
89	New Horizons Observations of the Cosmic Optical Background. Astrophysical Journal, 2021, 906, 77.	4.5	42
90	Charge of Dust on Surfaces in Plasma. IEEE Transactions on Plasma Science, 2007, 35, 271-279.	1.3	41

#	Article	IF	CITATIONS
91	Annual variation and synodic modulation of the sporadic meteoroid flux to the Moon. Geophysical Research Letters, 2015, 42, 10,580.	4.0	41
92	Dust observations at orbital altitudes surrounding Mars. Science, 2015, 350, aad0398.	12.6	41
93	Saturn's E ring: A dynamical approach. Journal of Geophysical Research, 2002, 107, SMP 1-1.	3.3	40
94	Measurement of positively and negatively charged particles inside PMSE during MIDAS SOLSTICE 2001. Journal of Geophysical Research, 2003, 108, .	3.3	40
95	In-situ measurement of smoke particles in the wintertime polar mesosphere between 80 and 85km altitude. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 61-70.	1.6	40
96	Experiments on dust transport in plasma to investigate the origin of the lunar horizon glow. Journal of Geophysical Research, 2009, 114, .	3.3	40
97	Experimental demonstration of the role of cohesion in electrostatic dust lofting. Geophysical Research Letters, 2013, 40, 1038-1042.	4.0	40
98	Plasma potential in the sheaths of electronâ€emitting surfaces in space. Geophysical Research Letters, 2016, 43, 525-531.	4.0	40
99	Electrostatic charging properties of simulated lunar dust. Geophysical Research Letters, 1995, 22, 2079-2082.	4.0	39
100	Three years of Galileo dust data: ii. 1993–1995. Planetary and Space Science, 1998, 47, 85-106.	1.7	38
101	First results from the Venetia Burney Student Dust Counter on the New Horizons mission. Geophysical Research Letters, 2010, 37, .	4.0	38
102	On the density of the dust halo around Mars. Journal of Geophysical Research, 1993, 98, 1205-1211.	3.3	37
103	In situ dust detection in fusion devices. Plasma Physics and Controlled Fusion, 2008, 50, 124046.	2.1	37
104	Investigation of dust transport on the lunar surface in a laboratory plasma with an electron beam. Journal of Geophysical Research, 2010, 115, .	3.3	37
105	Large area mass analyzer instrument for the chemical analysis of interstellar dust particles. Review of Scientific Instruments, 2007, 78, 014501.	1.3	33
106	Compositional mapping of planetary moons by mass spectrometry of dust ejecta. Planetary and Space Science, 2011, 59, 1815-1825.	1.7	33
107	Solar wind electron interaction with the dayside lunar surface and crustal magnetic fields: Evidence for precursor effects. Earth, Planets and Space, 2012, 64, 73-82.	2.5	33
108	Dust-Plasma Interactions in the Cometary Environment. Geophysical Monograph Series, 2013, , 17-25.	0.1	33

#	Article	IF	CITATIONS
109	Dust Measurements During Galileo's Approach to Jupiter and Io Encounter. Science, 1996, 274, 399-401.	12.6	32
110	Dust measurements in the Jovian magnetosphere. Geophysical Research Letters, 1997, 24, 2171-2174.	4.0	32
111	Three years of Ulysses dust data: 2005 to 2007. Planetary and Space Science, 2010, 58, 951-964.	1.7	32
112	Pluto's interaction with the solar wind. Journal of Geophysical Research: Space Physics, 2016, 121, 4232-4246.	2.4	32
113	Anomalous Flux in the Cosmic Optical Background Detected with New Horizons Observations. Astrophysical Journal Letters, 2022, 927, L8.	8.3	32
114	New Jovian ring?. Geophysical Research Letters, 1994, 21, 1039-1042.	4.0	31
115	Four years of Ulysses dust data: 1996–1999. Planetary and Space Science, 2001, 49, 1303-1324.	1.7	31
116	Dust grain charging and levitation in a weakly collisional sheath. Physics of Plasmas, 2003, 10, 3874-3880.	1.9	31
117	Five years of Ulysses dust data: 2000–2004. Planetary and Space Science, 2006, 54, 932-956.	1.7	31
118	On the origin & amp; thermal stability of Arrokoth's and Pluto's ices. Icarus, 2021, 356, 114072.	2.5	31
119	Charge and size distribution of mesospheric aerosol particles measured inside NLC and PMSE during MIDAS MaCWAVE 2002. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 114-123.	1.6	30
120	Dynamics and distribution of nanoâ€dust particles in the inner solar system. Geophysical Research Letters, 2013, 40, 2500-2504.	4.0	30
121	Dust torus around Mars. Journal of Geophysical Research, 1995, 100, 3277.	3.3	29
122	Generalizations of the Störmer problem for dust grain orbits. Physica D: Nonlinear Phenomena, 2002, 171, 178-195.	2.8	29
123	Dust transport near electron beam impact and shadow boundaries. Planetary and Space Science, 2011, 59, 1791-1794.	1.7	29
124	Measurements of the ionization coefficient of simulated iron micrometeoroids. Geophysical Research Letters, 2016, 43, 3645-3652.	4.0	29
125	Constraining the Solar System's Debris Disk with In Situ New Horizons Measurements from the Edgeworth–Kuiper Belt. Astrophysical Journal Letters, 2019, 881, L12.	8.3	29
126	The role of charge exchange in the solar wind absorption by Venus. Geophysical Research Letters, 1981, 8, 1265-1268.	4.0	28

#	Article	IF	CITATIONS
127	Ulysses jovian latitude scan of high-velocity dust streams originating from the jovian system. Planetary and Space Science, 2006, 54, 919-931.	1.7	28
128	Meteoritic influence on sodium and potassium abundance in the lunar exosphere measured by LADEE. Geophysical Research Letters, 2016, 43, 6096-6102.	4.0	28
129	A laboratory model of the lunar surface potential near boundaries between sunlit and shadowed regions. Geophysical Research Letters, 2007, 34, .	4.0	27
130	Dynamics of charged space debris in the Earth's plasma environment. Journal of Geophysical Research, 1997, 102, 7237-7246.	3.3	26
131	Modeling the formation of electrostatic discharges on Mars. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	26
132	The cosmic dust analyser onboard cassini: ten years of discoveries. CEAS Space Journal, 2011, 2, 3-16.	2.3	26
133	Characteristics of a plasma sheath in a magnetic dipole field: Implications to the solar wind interaction with the lunar magnetic anomalies. Journal of Geophysical Research, 2012, 117, .	3.3	26
134	Detection of meteoric smoke particles in the mesosphere by a rocket-borne mass spectrometer. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 118, 161-179.	1.6	26
135	A new look at Apollo 17 LEAM data: Nighttime dust activity in 1976. Planetary and Space Science, 2013, 89, 2-14.	1.7	25
136	Detecting meteoroid streams with an in-situ dust detector above an airless body. Icarus, 2016, 275, 221-231.	2.5	25
137	Reiner Gamma albedo features reproduced by modeling solar wind standoff. Communications Physics, 2018, 1, .	5.3	25
138	One year of Galileo dust data from the Jovian system: 1996. Planetary and Space Science, 2001, 49, 1285-1301.	1.7	24
139	Constraining the Ratio of Micrometeoroids From Short―and Longâ€Period Comets at 1ÂAU From LADEE Observations of the Lunar Dust Cloud. Geophysical Research Letters, 2018, 45, 1713-1722.	4.0	24
140	Dust at the Martian moons and in the circummartian space. Planetary and Space Science, 2014, 102, 171-175.	1.7	23
141	THE IMPACT EJECTA ENVIRONMENT OF NEAR EARTH ASTEROIDS. Astrophysical Journal Letters, 2016, 830, L29.	8.3	23
142	The effect of asymmetric surface topography on dust dynamics on airless bodies. Icarus, 2017, 291, 65-74.	2.5	23
143	Impacts of fast meteoroids and a plasma–dust cloud over the lunar surface. JETP Letters, 2017, 105, 635-640.	1.4	23
144	Rocket-borne mesospheric measurement of heavy (m≫10 amu) charge carriers. Geophysical Research Letters, 2000, 27, 3825-3828.	4.0	22

#	Article	IF	CITATIONS
145	Signatures of Enceladus in Saturn's E ring. Geophysical Research Letters, 2007, 34, .	4.0	22
146	Electric potentials in magnetic dipole fields normal and oblique to a surface in plasma: Understanding the solar wind interaction with lunar magnetic anomalies. Geophysical Research Letters, 2013, 40, 1686-1690.	4.0	22
147	Diffuse Rings. , 2009, , 511-536.		22
148	Techniques for galactic dust measurements in the heliosphere. Journal of Geophysical Research, 2000, 105, 10403-10410.	3.3	21
149	The Charging of Planetary Rings. Space Science Reviews, 2008, 137, 435-453.	8.1	21
150	The effect of Nix and Hydra on the putative Pluto–Charon dust cloud. Planetary and Space Science, 2011, 59, 1647-1653.	1.7	21
151	Negatively charged nano-grains at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A23.	5.1	21
152	Dust Phenomena Relating to Airless Bodies. Space Science Reviews, 2018, 214, 1.	8.1	21
153	Building a Weakly Outgassing Comet from a Generalized Ohm's Law. Physical Review Letters, 2019, 123, 055101.	7.8	21
154	The dynamics of submicronâ€sized dust particles lost from Phobos. Journal of Geophysical Research, 1991, 96, 11283-11290.	3.3	20
155	Dust streams from comet Shoemaker-Levy 9?. Geophysical Research Letters, 1994, 21, 1035-1038.	4.0	20
156	Magnetospheric effects on micrometeoroid fluxes. Journal of Geophysical Research, 1996, 101, 2169-2175.	3.3	20
157	Jovian dust streams: Probes of the Io plasma torus. Geophysical Research Letters, 2003, 30, .	4.0	20
158	Linear high resolution dust mass spectrometer for a mission to the Galilean satellites. Planetary and Space Science, 2012, 65, 10-20.	1.7	20
159	Time-resolved temperature measurements in hypervelocity dust impact. Planetary and Space Science, 2013, 89, 58-62.	1.7	20
160	Activity of the 2013 Geminid meteoroid stream at the Moon. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4225-4231.	4.4	20
161	Dust mitigation technology for lunar exploration utilizing an electron beam. Acta Astronautica, 2020, 177, 405-409.	3.2	20
162	Laboratory measurements of initial launch velocities of electrostatically lofted dust on airless planetary bodies. Icarus, 2020, 352, 113972.	2.5	20

#	Article	IF	CITATIONS
163	Seasonal variations in Saturn's E-ring. Geophysical Research Letters, 2004, 31, .	4.0	19
164	Experimental study of a photoelectron sheath. Physics of Plasmas, 2012, 19, .	1.9	19
165	The Student Dust Counter: Status report at 23 AU. Earth, Planets and Space, 2013, 65, 1145-1149.	2.5	19
166	Impact Ejecta and Gardening in the Lunar Polar Regions. Journal of Geophysical Research E: Planets, 2019, 124, 143-154.	3.6	19
167	Jupiter's exogenic dust ring. Journal of Geophysical Research, 1998, 103, 20023-20030.	3.3	18
168	Constraints on dust production in the Edgeworth-Kuiper Belt from Pioneer 10 and New Horizons measurements. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	18
169	On the Edgeworthâ€Kuiper Belt dust flux to Saturn. Geophysical Research Letters, 2012, 39, .	4.0	18
170	Hypervelocity dust impacts on the Wind spacecraft: Correlations between Ulysses and Wind interstellar dust detections. Journal of Geophysical Research: Space Physics, 2015, 120, 7121-7129.	2.4	18
171	LADEE/LDEX observations of lunar pickup ion distribution and variability. Geophysical Research Letters, 2016, 43, 3069-3077.	4.0	18
172	Understanding Cassini RPWS Antenna Signals Triggered by Dust Impacts. Geophysical Research Letters, 2019, 46, 10941-10950.	4.0	18
173	Impact ejecta environment of an eccentric asteroid: 3200 Phaethon. Planetary and Space Science, 2019, 165, 194-204.	1.7	18
174	Measurements of the terrestrial dust influx variability by the Cosmic Dust Experiment. Planetary and Space Science, 2011, 59, 319-326.	1.7	17
175	Laboratory investigation of lunar surface electric potentials in magnetic anomaly regions. Geophysical Research Letters, 2015, 42, 4280-4287.	4.0	17
176	Laboratory Investigation of Rate of Electrostatic Dust Lofting Over Time on Airless Planetary Bodies. Geophysical Research Letters, 2018, 45, 13,206.	4.0	17
177	Chargeâ€exchange in the magnetosheaths of Venus and Mars: A comparison. Geophysical Research Letters, 1983, 10, 163-164.	4.0	16
178	Galileo dust data from the jovian system: 1997–1999. Planetary and Space Science, 2006, 54, 879-910.	1.7	16
179	Dust Observations by the Radio and Plasma Wave Science Instrument During Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 10,101.	4.0	16
180	Size Distributions of Satellite Dust Ejecta: Effects of Radiation Pressure and Planetary Oblateness. Icarus, 1993, 105, 363-369.	2.5	15

#	Article	IF	CITATIONS
181	Nonkeplerian dust dynamics at Saturn. Geophysical Research Letters, 2001, 28, 1907-1910.	4.0	15
182	Measurements of electrical discharges in Martian regolith simulant. IEEE Transactions on Plasma Science, 2001, 29, 288-291.	1.3	15
183	Collision cross sections of small water clusters. Physical Review A, 2001, 64, .	2.5	15
184	Discovery of nonâ€random spatial distribution of impacts in the Stardust cometary collector. Meteoritics and Planetary Science, 2008, 43, 415-429.	1.6	15
185	Polyvinylidene fluoride dust detector response to particle impacts. Review of Scientific Instruments, 2010, 81, 034501.	1.3	15
186	Suprathermal lons in the Outer Heliosphere. Astrophysical Journal, 2019, 876, 46.	4.5	15
187	Simulating the Reiner Gamma Swirl: The Longâ€Term Effect of Solar Wind Standoff. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006219.	3.6	15
188	Influence of Solar Disturbances on Galactic Cosmic Rays in the Solar Wind, Heliosheath, and Local Interstellar Medium: Advanced Composition Explorer, New Horizons, and Voyager Observations. Astrophysical Journal, 2020, 905, 69.	4.5	15
189	A Predicted Dearth of Majority Hypervolatile Ices in Oort Cloud Comets. Planetary Science Journal, 2022, 3, 112.	3.6	15
190	Three years of Ulysses dust data: 1993â \in "1995. Planetary and Space Science, 1999, 47, 363-383.	1.7	14
191	Potential distribution around sounding rockets in mesospheric layers with charged aerosol particles. Geophysical Research Letters, 2004, 31, .	4.0	14
192	The Electrostatic Lunar Dust Analyzer (ELDA) for the detection and trajectory measurement of slow-moving dust particles from the lunar surface. Planetary and Space Science, 2011, 59, 1446-1454.	1.7	14
193	FPGA cross-correlation filters for real-time dust detection and selection. Planetary and Space Science, 2013, 89, 71-76.	1.7	14
194	Dust and spacecraft charging in Saturn's E ring. Earth, Planets and Space, 2013, 65, 149-156.	2.5	14
195	Production of neutral gas by micrometeoroid impacts. Icarus, 2014, 227, 89-93.	2.5	14
196	Student Dust Counter: Status report at 38 AU. Icarus, 2019, 321, 116-125.	2.5	14
197	Meteoroids as One of the Sources for Exosphere Formation on Airless Bodies in the Inner Solar System. Space Science Reviews, 2021, 217, 1.	8.1	14
198	Time-dependent numerical modeling of dust halo formation at comets. Astrophysical Journal, 1986, 311, 491.	4.5	14

#	Article	IF	CITATIONS
199	Sample return of interstellar matter (SARIM). Experimental Astronomy, 2009, 23, 303-328.	3.7	13
200	Galileo dust data from the jovian system: 2000 to 2003. Planetary and Space Science, 2010, 58, 965-993.	1.7	13
201	The Cassini Cosmic Dust Analyzer. , 2004, , 465-518.		13
202	Cratering studies in Polyvinylidene Fluoride (PVDF) thin films. Planetary and Space Science, 2013, 89, 29-35.	1.7	12
203	On the application of a linear time-of-flight mass spectrometer for the investigation of hypervelocity impacts of micron and sub-micron sized dust particles. Planetary and Space Science, 2013, 89, 47-57.	1.7	12
204	Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator. Review of Scientific Instruments, 2017, 88, 034501.	1.3	12
205	Comparative Na and K Mercury and Moon Exospheres. Space Science Reviews, 2022, 218, 1.	8.1	12
206	Where Exactly Are the Arcs of Neptune?. Icarus, 1993, 106, 525-535.	2.5	11
207	DuneXpress. Experimental Astronomy, 2009, 23, 981-999.	3.7	11
208	Simulation of polyvinylidene fluoride detector response to hypervelocity particle impact. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622, 583-587.	1.6	11
209	Active Cosmic Dust Collector. Planetary and Space Science, 2012, 60, 261-273.	1.7	11
210	An investigation into potential causes of the anomalistic feature observed by the Rosetta Alice spectrograph around 67P/Churyumov–Gerasimenko. Acta Astronautica, 2016, 125, 3-10.	3.2	11
211	Laboratory investigation of the effect of surface roughness on photoemission from surfaces in space. Planetary and Space Science, 2018, 156, 92-95.	1.7	11
212	Dynamics of electrostatically lofted dust on airless planetary bodies. Icarus, 2021, 366, 114519.	2.5	11
213	The effect of a sector boundary crossing on the cometary dust tail. Earth, Moon and Planets, 1987, 37, 71-77.	0.6	10
214	Submicron-sized dust grains in the Martian environment. Advances in Space Research, 1992, 12, 27-30.	2.6	10
215	Rocket-Borne Probes for Charged Ionospheric Aerosol Particles. IEEE Transactions on Plasma Science, 2004, 32, 716-723.	1.3	10
216	Dust Transport on a Surface in Plasma. IEEE Transactions on Plasma Science, 2011, 39, 2730-2731.	1.3	10

#	Article	IF	CITATIONS
217	Development of the nano-dust analyzer (NDA) for detection and compositional analysis of nanometer-size dust particles originating in the inner heliosphere. Review of Scientific Instruments, 2014, 85, 035113.	1.3	10
218	Investigation of Coatings for Langmuir Probes in an Oxygenâ€Rich Space Environment. Journal of Geophysical Research: Space Physics, 2018, 123, 6054-6064.	2.4	10
219	Student Dust Counter Status Report: The First 50 au. Planetary Science Journal, 2022, 3, 69.	3.6	10
220	Dust capture experiment in HT-7. New Journal of Physics, 2009, 11, 113041.	2.9	9
221	Spokes in Saturn's B Ring: Could Lightning be the Cause?. IEEE Transactions on Plasma Science, 2010, 38, 874-879.	1.3	9
222	Novel instrument for Dust Astronomy: Dust Telescope. , 2011, , .		9
223	Dust trajectory sensor: Accuracy and data analysis. Review of Scientific Instruments, 2011, 82, 105104.	1.3	9
224	Spacecraft charging near Enceladus. Geophysical Research Letters, 2012, 39, .	4.0	9
225	The MAGIC meteoric smoke particle sampler. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 118, 127-144.	1.6	9
226	Identification of when a Langmuir probe is in the sheath of a spacecraft: The effects of secondary electron emission from the probe. Journal of Geophysical Research: Space Physics, 2015, 120, 2428-2437.	2.4	9
227	Dust Plasma Interactions at Jupiter. Astrophysics and Space Science, 1998, 264, 257-271.	1.4	8
228	Magnetospheric screening of cosmic dust. Journal of Geophysical Research, 1999, 104, 12577-12583.	3.3	8
229	Plasma conditions and the structure of the Jovian ring. Journal of Geophysical Research, 2010, 115, .	3.3	8
230	THE GLOBAL MORPHOLOGY OF THE SOLAR WIND INTERACTION WITH COMET CHURYUMOV-GERASIMENKO. Astrophysical Journal, 2014, 794, 14.	4.5	8
231	Threeâ€dimensional fullâ€kinetic simulation of the solar wind interaction with a vertical dipolar lunar magnetic anomaly. Geophysical Research Letters, 2016, 43, 4136-4144.	4.0	8
232	Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith. Icarus, 2017, 293, 180-184.	2.5	8
233	Circumplanetary Dust Populations. Space Science Reviews, 2019, 215, 1.	8.1	8
234	Impact Ejecta Plumes at the Moon. Geophysical Research Letters, 2019, 46, 534-543.	4.0	8

#	Article	IF	CITATIONS
235	The effect of high-velocity dust particle impacts on microchannel plate (MCP) detectors. Planetary and Space Science, 2020, 183, 104628.	1.7	8
236	Magnetic Field Effect on Antenna Signals Induced by Dust Particle Impacts. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027245.	2.4	8
237	Improvement of the electron beam (e-beam) lunar dust mitigation technology with varying the beam incident angle. Acta Astronautica, 2021, 188, 362-366.	3.2	8
238	Tenuous ring formation by the capture of interplanetary dust at Saturn. Journal of Geophysical Research, 2005, 110, .	3.3	7
239	Plasma probes for the lunar surface. Journal of Geophysical Research, 2008, 113, .	3.3	7
240	Laboratory Study of Antenna Signals Generated by Dust Impacts on Spacecraft. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028965.	2.4	7
241	Laboratory testing and data analysis of the Electrostatic Lunar Dust Analyzer (ELDA) instrument. Planetary and Space Science, 2013, 89, 63-70.	1.7	6
242	Probing IMF using nanodust measurements from inside Saturn's magnetosphere. Geophysical Research Letters, 2013, 40, 2902-2906.	4.0	6
243	Effect of filament supports on emissive probe measurements. Review of Scientific Instruments, 2013, 84, 013506.	1.3	6
244	Photoelectronâ€mediated spacecraft potential fluctuations. Journal of Geophysical Research: Space Physics, 2014, 119, 1094-1101.	2.4	6
245	Modeling solar wind massâ€loading in the vicinity of the Sun using 3â€D MHD simulations. Journal of Geophysical Research: Space Physics, 2014, 119, 18-25.	2.4	6
246	A large ion beam device for laboratory solar wind studies. Review of Scientific Instruments, 2017, 88, 115112.	1.3	6
247	Investigation of Coatings for Langmuir Probes: Effect of Surface Oxidation on Photoemission Characteristics. Journal of Geophysical Research: Space Physics, 2019, 124, 2357-2361.	2.4	6
248	Laboratory measurements of size distribution of electrostatically lofted dust. Icarus, 2022, 371, 114684.	2.5	6
249	Accuracy of epicyclic description of dust grain orbits about Saturn. Journal of Geophysical Research, 2003, 108, .	3.3	5
250	Ballistic motion of dust particles in the Lunar Roving Vehicle dust trails. American Journal of Physics, 2012, 80, 452-456.	0.7	5
251	Mass loading of the solar wind by a sungrazing comet. Geophysical Research Letters, 2014, 41, 5376-5381.	4.0	5
252	Floating potential measurements in plasmas: From dust to spacecraft. Physics of Plasmas, 2017, 24, 023701.	1.9	5

#	Article	IF	CITATIONS
253	SELMA mission: How do airless bodies interact with space environment? The Moon as an accessible laboratory. Planetary and Space Science, 2018, 156, 23-40.	1.7	5
254	Effects of interplanetary coronal mass ejections on the transport of nano-dust generated in the inner solar system. Planetary and Space Science, 2018, 156, 7-16.	1.7	5
255	Microchannel Plate Efficiency to Detect Low Velocity Dust Impacts. Journal of Geophysical Research: Space Physics, 2018, 123, 9936-9940.	2.4	5
256	Interplanetary dust delivery of water to the atmospheres of Pluto and Triton. Astronomy and Astrophysics, 2018, 617, L5.	5.1	5
257	Hyperbolic Meteoroids Impacting the Moon. Astrophysical Journal Letters, 2020, 890, L11.	8.3	5
258	Differential Ablation of Organic Coatings From Micrometeoroids Simulated in the Laboratory. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
259	The Electrodynamics of Charged Dust in the Cometary Environment. International Astronomical Union Colloquium, 1991, 116, 1093-1104.	0.1	4
260	Interstellar Dust Flow through the Solar System. AIP Conference Proceedings, 2011, , .	0.4	4
261	New experimental capability to investigate the hypervelocity micrometeoroid bombardment of cryogenic surfaces. Review of Scientific Instruments, 2016, 87, 024502.	1.3	4
262	Evidence for detection of energetic neutral atoms by LADEE. Planetary and Space Science, 2017, 139, 31-36.	1.7	4
263	Using dust shed from asteroids as microsamples to link remote measurements with meteorite classes. Meteoritics and Planetary Science, 2019, 54, 2046-2066.	1.6	4
264	Pluto's Interaction With Energetic Heliospheric Ions. Journal of Geophysical Research: Space Physics, 2019, 124, 7413-7424.	2.4	4
265	Laboratory Simulation of Solar Wind Interaction With Lunar Magnetic Anomalies. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
266	Modeling Meteoroid Impacts on the Juno Spacecraft. Planetary Science Journal, 2022, 3, 14.	3.6	4
267	Characteristics of a new dust coordinate sensor. Measurement Science and Technology, 2012, 23, 105902.	2.6	3
268	SARIM PLUS—sample return of comet 67P/CG and of interstellar matter. Experimental Astronomy, 2012, 33, 723-751.	3.7	3
269	Hyperdust: An advanced in-situ detection and chemical analysis of microparticles in space. , 2015, , .		3

270 Dust charge measurements by the Lunar Dust Experiment. , 2015, , .

3

#	Article	IF	CITATIONS
271	Development of a Double Hemispherical Probe for Improved Space Plasma Measurements. Journal of Geophysical Research: Space Physics, 2018, 123, 2916-2925.	2.4	3
272	Calibration of polyvinylidene fluoride based dust detectors in response to varying grain density and incidence angle. Review of Scientific Instruments, 2020, 91, 023307.	1.3	3
273	The Lunar Dust Experiment (LDEX) Onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission. , 2015, , 93-113.		3
274	Fine-grained regolith loss on sub-km asteroids. Nature Astronomy, 2022, 6, 1043-1050.	10.1	3
275	Modeling of dust halo formation following comet outbursts: Preliminary results. Geophysical Research Letters, 1986, 13, 299-301.	4.0	2
276	Captured dust in planetary magnetospheres. , 1998, , .		2
277	Photoelectric Charging of Dust Particles. , 2000, , 367-372.		2
278	Dust Capture by the Saturnian Magnetosphere. IEEE Transactions on Plasma Science, 2004, 32, 598-600.	1.3	2
279	Solar wind mass-loading due to dust. AIP Conference Proceedings, 2013, , .	0.4	2
280	Indirect Charged Particle Detection: Concepts and a Classroom Demonstration. Physics Teacher, 2013, 51, 472-475.	0.3	2
281	Plasma processes at comet Churyumov–Gerasimenko: Expectations for Rosetta. Journal of Plasma Physics, 2013, 79, 1067-1070.	2.1	2
282	The effects of magnetic fields on photoelectron-mediated spacecraft potential fluctuations. Journal of Geophysical Research: Space Physics, 2014, 119, 7319-7326.	2.4	2
283	Experimental Methods of Dust Charging and Mobilization on Surfaces with Exposure to Ultraviolet Radiation or Plasmas. Journal of Visualized Experiments, 2018, , .	0.3	2
284	Formation of the Lunar Dust Ejecta Cloud. Planetary Science Journal, 2021, 2, 67.	3.6	2
285	Calibration methods of charge sensitive amplifiers at the Colorado dust accelerator. Review of Scientific Instruments, 2020, 91, 113301.	1.3	2
286	The spatial distribution of submicron-sized debris in the terrestrial magnetosphere. Advances in Space Research, 1990, 10, 403-407.	2.6	1
287	Laboratory experiments relating to noctilucent clouds. , 1998, , .		1
288	Tribute to professor D. Asoka mendis on the occasion of his 65th birthday. IEEE Transactions on Plasma Science, 2001, 29, 149-150.	1.3	1

#	Article	IF	CITATIONS
289	Electrostatic Discharging of Dust near the Surface of Mars. AIP Conference Proceedings, 2002, , .	0.4	1
290	The Student Dust Counter on the New Horizons Mission. , 2009, , 387-402.		1
291	Frontiers in In-Situ Cosmic Dust Detection and Analysis. AIP Conference Proceedings, 2011, , .	0.4	1
292	Mars-Moons Exploration, Reconnaissance, and Landed Investigation (MERLIN). , 2016, , .		1
293	Dusty plasmas in the lunar exosphere: Effects of meteoroids. Journal of Physics: Conference Series, 2018, 946, 012142.	0.4	1
294	Plasma Sheath Formation at Craters on Airless Bodies. Journal of Geophysical Research: Space Physics, 2019, 124, 4188-4193.	2.4	1
295	Contact charging of lunar and Martian dust simulants. , 2002, 107, 15-1.		1
296	Dust Charging in the Laboratory and in Space. , 2000, , 313-319.		0
297	Unique conjunction of planetary probes. Eos, 2000, 81, 627.	0.1	ο
298	Halo orbits around saturn. COSPAR Colloquia Series, 2002, , 164-167.	0.2	0
299	Dust telescope: A new tool for dust research. COSPAR Colloquia Series, 2002, 15, 181-194.	0.2	Ο
300	Rocket-born instrument to detect charged smoke and cloud particles in the mesospheric region. , 0, , .		0
301	Charged Dust Dynamics near the Lunar Surface. , 2006, , 1.		Ο
302	Surface Potentials Near the UV Light/Dark Boundary. , 2007, , .		0
303	The Charging of Planetary Rings. Space Sciences Series of ISSI, 2008, , 435-453.	0.0	Ο
304	Surface—Plasma Interaction on the Moon. AIP Conference Proceedings, 2008, , .	0.4	0
305	The Wave Mechanism of Spoke Formation in Saturn's Rings. AIP Conference Proceedings, 2008, , .	0.4	0
306	Special Issue on Physics of Dusty Plasmas 2010. IEEE Transactions on Plasma Science, 2010, 38, 766-767.	1.3	0

#	Article	IF	CITATIONS
307	Dust Charging and Transport on Surfaces. AIP Conference Proceedings, 2011, , .	0.4	0
308	The Dust Accelerator Facility of the Colorado Center for Lunar Dust and Atmospheric Studies. AIP Conference Proceedings, 2011, , .	0.4	0
309	Operation of a Langmuir Probe in a Photoelectron Plasma. AIP Conference Proceedings, 2011, , .	0.4	0
310	Determination of impact position on an impact ionization detector by electrostatic induction. Advances in Space Research, 2018, 62, 890-895.	2.6	0
311	Measurements of the Potential Profiles of Glow Discharges Using an Emissive Probe. IEEE Transactions on Plasma Science, 2019, 47, 199-203.	1.3	0
312	Restoring light transmission of dusty glass surfaces on the Moon. Advances in Space Research, 2021, 68, 4050-4050.	2.6	0
313	A Rocket-borne Detector for Charged Atmospheric Aerosols. , 2000, , 275-280.		0
314	Magnetospheric Effects on the Cosmic Dust Input into the Earth's Atmosphere. , 2001, , 93-106.		0
315	Dust Dynamics in Planetary Magnetospheres. , 2002, , 179-182.		0
316	Dust Plasma Interactions At Jupiter. , 1999, , 257-271.		0
317	Dust Pond. , 2015, , 680-683.		0
318	Electrostatic Dust Transport in Laboratory and Space. , 2018, , .		0
319	Dust Rotation and Swirl Morphology in Lunar Magnetic Anomalies. Geophysical Research Letters, 2022, 49, .	4.0	0
320	Erratum - Charge Exchange in Solar Wind / Cometary Interactions. Astrophysical Journal, 1983, 274, 919.	4.5	0