Silvia V Conde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5229465/publications.pdf

Version: 2024-02-01

72 papers

1,677 citations

236925 25 h-index 315739 38 g-index

75 all docs

75 docs citations

75 times ranked 1446 citing authors

#	Article	IF	CITATIONS
1	Metabolic dysfunction in OSA: Is there something new under the sun?. Journal of Sleep Research, 2022, 31, e13418.	3.2	31
2	Carbon Monoxide Modulation of Microglia-Neuron Communication: Anti-Neuroinflammatory and Neurotrophic Role. Molecular Neurobiology, 2022, 59, 872-889.	4.0	8
3	Dysmetabolism and Neurodegeneration: Trick or Treat?. Nutrients, 2022, 14, 1425.	4.1	8
4	Dysmetabolism and Sleep Fragmentation in Obstructive Sleep Apnea Patients Run Independently of High Caffeine Consumption. Nutrients, 2022, 14, 1382.	4.1	2
5	Propranolol therapy for cerebral cavernous malformations. World Academy of Sciences Journal, 2022, 4, .	0.6	O
6	Long-Term Hypercaloric Diet Consumption Exacerbates Age-Induced Dysmetabolism and Carotid Body Dysfunction: Beneficial Effects of CSN Denervation. Frontiers in Physiology, 2022, 13, .	2.8	6
7	Hypoxic and Hypercapnic Responses in Transgenic Murine Model of Alzheimer's Disease Overexpressing Human AβPP: The Effects of Pretreatment with Memantine and Rivastigmine. International Journal of Molecular Sciences, 2022, 23, 6004.	4.1	2
8	Type 2 diabetes progression differently affects endothelial function and vascular contractility in the aorta and the pulmonary artery. Scientific Reports, 2021, 11, 6052.	3.3	5
9	Leptin and dorsomedial hypothalamus: is not all about feeding and energy homeostasis. Sleep, 2021, 44,	1.1	O
10	The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms― current progress, challenges, and charting the future. Bioelectronic Medicine, 2021, 7, 7.	2.3	5
11	Low frequency conduction block: a promising new technique toÂadvance bioelectronic medicines. Bioelectronic Medicine, 2021, 7, 11.	2.3	2
12	Chronic Intermittent Hypoxia Induces Early-Stage Metabolic Dysfunction Independently of Adipose Tissue Deregulation. Antioxidants, 2021, 10, 1233.	5.1	6
13	Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes. Molecular Metabolism, 2021, 51, 101241.	6.5	35
14	Peripheral Dopamine Directly Acts on Insulin-Sensitive Tissues to Regulate Insulin Signaling and Metabolic Function. Frontiers in Pharmacology, 2021, 12, 713418.	3.5	23
15	Blood Pressure Regulation by the Carotid Sinus Nerve: Clinical Implications for Carotid Body Neuromodulation. Frontiers in Neuroscience, 2021, 15, 725751.	2.8	3
16	Gender Differences in the Context of Obstructive Sleep Apnea and Metabolic Diseases. Frontiers in Physiology, 2021, 12, 792633.	2.8	19
17	Electrostimulation of the carotid sinus nerve in mice attenuates inflammation via glucocorticoid receptor on myeloid immune cells. Journal of Neuroinflammation, 2020, 17, 368.	7.2	14
18	Exploring the Mediators that Promote Carotid Body Dysfunction in Type 2 Diabetes and Obesity Related Syndromes. International Journal of Molecular Sciences, 2020, 21, 5545.	4.1	24

#	Article	IF	Citations
19	Leptin: Master Regulator of Biological Functions that Affects Breathing. , 2020, 10, 1047-1083.		19
20	A2 Adenosine Receptors Mediate Whole-Body Insulin Sensitivity in a Prediabetes Animal Model: Primary Effects on Skeletal Muscle. Frontiers in Endocrinology, 2020, 11, 262.	3 . 5	26
21	Immunity and the carotid body: implications for metabolic diseases. Bioelectronic Medicine, 2020, 6, 24.	2.3	17
22	Carotid body chemosensitivity: early biomarker of dysmetabolism in humans. European Journal of Endocrinology, 2020, 182, 549-557.	3.7	33
23	Contribution of adenosine and ATP to the carotid body chemosensory activity in ageing. Journal of Physiology, 2019, 597, 4991-5008.	2.9	14
24	High frequency shift in Carotid Sinus Nerve and Sympathetic Nerve activity in Type 2 Diabetic Rat Model. , $2019,$		5
25	Decoding Neural Metabolic Markers From the Carotid Sinus Nerve in a Type 2 Diabetes Model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 2034-2043.	4.9	24
26	Evaluating the Impact of Different Hypercaloric Diets on Weight Gain, Insulin Resistance, Glucose Intolerance, and its Comorbidities in Rats. Nutrients, 2019, 11, 1197.	4.1	20
27	Contribution of carotid body to leptin effects on ventilation and blood pressure in control and obese rats. , 2019, , .		0
28	The carotid body: A candidate for regaining glucose tolerance in Type 2 diabetes., 2019,, 98-101.		0
29	Ablation of the carotid bodies in disease: meeting its adverse effects. Journal of Physiology, 2018, 596, 2955-2955.	2.9	7
30	High fat diet blunts the effects of leptin on ventilation and on carotid body activity. Journal of Physiology, 2018, 596, 3187-3199.	2.9	37
31	Bioelectronic modulation of carotid sinus nerve activity in the rat: a potential therapeutic approach for type 2 diabetes. Diabetologia, 2018, 61, 700-710.	6.3	52
32	Targeting bioelectronically the carotid sinus nerve in Type 2 diabetes: strengths, drawbacks and challenges for the future. Bioelectronics in Medicine, 2018, 1, 167-170.	2.0	1
33	Adenosine Mediates Hypercapnic Response in the Rat Carotid Body via A2A and A2B Receptors. Advances in Experimental Medicine and Biology, 2018, 1071, 89-93.	1.6	6
34	Carotid Body Dysfunction in Diet-Induced Insulin Resistance Is Associated with Alterations in Its Morphology. Advances in Experimental Medicine and Biology, 2018, 1071, 103-108.	1.6	9
35	Carotid body: a metabolic sensor implicated in insulin resistance. Physiological Genomics, 2018, 50, 208-214.	2.3	33
36	Insulin resistance: a new consequence of altered carotid body chemoreflex?. Journal of Physiology, 2017, 595, 31-41.	2.9	41

#	Article	IF	CITATIONS
37	Methylglyoxal-induced glycation changes adipose tissue vascular architecture, flow and expansion, leading to insulin resistance. Scientific Reports, 2017, 7, 1698.	3.3	41
38	Micro Computed Tomography Detects Changes in Liver Density in Control and in Prediabetes Rats. Procedia Manufacturing, 2017, 12, 106-112.	1.9	1
39	Functional abolition of carotid body activity restores insulin action and glucose homeostasis in rats: key roles for visceral adipose tissue and the liver. Diabetologia, 2017, 60, 158-168.	6.3	45
40	Purines and Carotid Body: New Roles in Pathological Conditions. Frontiers in Pharmacology, 2017, 8, 913.	3.5	27
41	Age protects from harmful effects produced by chronic intermittent hypoxia. Journal of Physiology, 2016, 594, 1773-1790.	2.9	33
42	Paracrine effect of carbon monoxide: astrocytes promote neuroprotection via purinergic signaling. Journal of Cell Science, 2016, 129, 3178-88.	2.0	16
43	Insulin resistance is associated with tissue-specific regulation of HIF-1α and HIF-2α during mild chronic intermittent hypoxia. Respiratory Physiology and Neurobiology, 2016, 228, 30-38.	1.6	35
44	Disclosing caffeine action on insulin sensitivity: Effects on rat skeletal muscle. European Journal of Pharmaceutical Sciences, 2015, 70, 107-116.	4.0	16
45	Caffeine, Insulin Resistance, and Hypertension. , 2015, , 747-755.		2
46	The Carotid Body Does Not Mediate the Acute Ventilatory Effects of Leptin. Advances in Experimental Medicine and Biology, 2015, 860, 379-385.	1.6	13
47	Adenosine Receptor Blockade by Caffeine Inhibits Carotid Sinus Nerve Chemosensory Activity in Chronic Intermittent Hypoxic Animals. Advances in Experimental Medicine and Biology, 2015, 860, 133-137.	1.6	9
48	Hyperbaric Oxygen Therapy Improves Glucose Homeostasis in Type 2 Diabetes Patients: A Likely Involvement of the Carotid Bodies. Advances in Experimental Medicine and Biology, 2015, 860, 221-225.	1.6	25
49	Fernando de Castro and the discovery of the arterial chemoreceptors. Frontiers in Neuroanatomy, 2014, 8, 25.	1.7	16
50	Revisiting cAMP signaling in the carotid body. Frontiers in Physiology, 2014, 5, 406.	2.8	15
51	Carotid body, insulin, and metabolic diseases: unraveling the links. Frontiers in Physiology, 2014, 5, 418.	2.8	67
52	Carotid Body Denervation Prevents the Development of Insulin Resistance and Hypertension Induced by Hypercaloric Diets. Diabetes, 2013, 62, 2905-2916.	0.6	172
53	Chronic caffeine intake reverses age-induced insulin resistance in the rat: effect on skeletal muscle Glut4 transporters and AMPK activity. Age, 2013, 35, 1755-1765.	3.0	32
54	Carotid body chemotransduction gets the human touch. Journal of Physiology, 2013, 591, 6131-6132.	2.9	5

#	Article	IF	Citations
55	Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats. British Journal of Nutrition, 2012, 107, 86-95.	2.3	79
56	Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity. Journal of Applied Physiology, 2012, 112, 2002-2010.	2.5	54
57	Chronic Caffeine Intake in Adult Rat Inhibits Carotid Body Sensitization Produced by Chronic Sustained Hypoxia but Maintains Intact Chemoreflex Output. Molecular Pharmacology, 2012, 82, 1056-1065.	2.3	21
58	Effect of Chronic Caffeine Intake on Carotid Body Catecholamine Dynamics in Control and Chronically Hypoxic Rats. Advances in Experimental Medicine and Biology, 2012, 758, 315-323.	1.6	2
59	Carotid body function and ventilatory responses in intermittent hypoxia. evidence for anomalous brainstem integration of arterial chemoreceptor input. Journal of Cellular Physiology, 2011, 226, 1961-1969.	4.1	47
60	A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology. Respiratory Physiology and Neurobiology, 2010, 174, 317-330.	1.6	31
61	Adenosine in Peripheral Chemoreception: New Insights into a Historically Overlooked Molecule – Invited Article. Advances in Experimental Medicine and Biology, 2009, 648, 145-159.	1.6	32
62	The A2B-D2 Receptor Interaction that Controls Carotid Body Catecholamines Release Locates Between the Last Two Steps of Hypoxic Transduction Cascade. Advances in Experimental Medicine and Biology, 2009, 648, 161-168.	1.6	8
63	An antagonistic interaction between A _{2B} adenosine and D ₂ dopamine receptors modulates the function of rat carotid body chemoreceptor cells. Journal of Neurochemistry, 2008, 107, 1369-1381.	3.9	39
64	Low glucose effects on rat carotid body chemoreceptor cells' secretory responses and action potential frequency in the carotid sinus nerve. Journal of Physiology, 2007, 585, 721-730.	2.9	41
65	Function of the rat carotid body chemoreceptors in ageing. Journal of Neurochemistry, 2006, 99, 711-723.	3.9	28
66	Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors. Journal of Neurochemistry, 2006, 98, 616-628.	3.9	62
67	Activation of nicotinic ACh receptors with \hat{l}_{\pm} 4 subunits induces adenosine release at the rat carotid body. British Journal of Pharmacology, 2006, 147, 783-789.	5.4	24
68	Profiles for ATP and Adenosine Release at the Carotid Body in Response to O2 Concentrations., 2006, 580, 179-184.		16
69	An Overview on the Homeostasis of Ca2+ in Chemoreceptor Cells of the Rabbit and Rat Carotid Bodies. , 2006, 580, 215-222.		7
70	Hypoxia induces adenosine release from the rat carotid body. Journal of Neurochemistry, 2004, 89, 1148-1156.	3.9	77
71	Adenosine-Acetylcholine Interactions at the Rat Carotid Body. Advances in Experimental Medicine and Biology, 2003, 536, 305-311.	1.6	1
72	Is Fat Tissue "Plastic�. Frontiers for Young Minds, 0, 10, .	0.8	0