Athanasios G Konstandopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5229391/publications.pdf

Version: 2024-02-01

81 papers 3,193 citations

218677 26 h-index 214800 47 g-index

84 all docs 84 docs citations

84 times ranked 2279 citing authors

#	Article	IF	CITATIONS
1	Valorization of Plastic Waste: A Lab-Scale Approach with the Aid of Solar Hydrothermal Liquefaction Technology. Waste and Biomass Valorization, 2022, 13, 3835-3844.	3.4	6
2	Solar fuels and industrial solar chemistry. , 2021, , 677-724.		0
3	Valorization of organic waste with the aid of solar hydrothermal liquefaction technology. AIP Conference Proceedings, 2020, , .	0.4	2
4	Iron oxide-based particles for high temperature thermochemical energy storage via the elemental sulfur thermochemical cycle. AIP Conference Proceedings, 2019, , .	0.4	3
5	Oxidative Reactivity of Particulate Samples from Different Diesel Combustion Systems and Its Relation to Structural and Spectral Characteristics of Soot. Emission Control Science and Technology, 2019, 5, 99-123.	1.5	11
6	Transportation and solar-aided utilization of CO2: Technoeconomic analysis of spanning routes of CO2 conversion to solar fuels. Journal of CO2 Utilization, 2019, 30, 142-157.	6.8	13
7	Oxide particles as combined heat storage medium and sulphur trioxide decomposition catalysts for solar hydrogen production through sulphur cycles. International Journal of Hydrogen Energy, 2019, 44, 9830-9840.	7.1	10
8	A Tutorial on Testing Particulate Filters with a Side-Stream Reactor (SSR) Exhaust Setup. Emission Control Science and Technology, 2018, 4, 312-320.	1.5	0
9	HYDROSOL-PLANT: Structured redox reactors for H2 production from solar thermochemical H2O splitting. AIP Conference Proceedings, 2018, , .	0.4	8
10	Study of Brake Wear Particle Emissions of a Minivan on a Chassis Dynamometer. Emission Control Science and Technology, 2018, 4, 271-278.	1.5	26
11	On the Effective Density and Fractal–Like Dimension of Diesel Soot Aggregates as a Function of Mobility Diameter. Emission Control Science and Technology, 2018, 4, 240-246.	1.5	0
12	Shortlisting of Composite CaO-Based Structured Bodies Suitable for Thermochemical Heat Storage with the CaO/Ca(OH)2 Reaction Scheme. Energy & Energy & 2017, 31, 6548-6559.	5.1	13
13	Material development and assessment of an energy storage concept based on the CaO-looping process. Solar Energy, 2017, 150, 298-309.	6.1	51
14	Multi-cyclic evaluation of composite CaO-based structured bodies for thermochemical heat storage via the CaO/Ca(OH)2 reaction scheme. Solar Energy, 2017, 146, 65-78.	6.1	43
15	Analysis of CO 2 transport including impurities for the optimization of point-to-point pipeline networks for integration into future solar fuel plants. International Journal of Greenhouse Gas Control, 2017, 66, 10-24.	4.6	8
16	On kinetic modelling for solar redox thermochemical H ₂ O and CO ₂ splitting over NiFe ₂ O ₄ for H ₂ , CO and syngas production. Physical Chemistry Chemical Physics, 2017, 19, 26776-26786.	2.8	7
17	Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project. AIP Conference Proceedings, 2017, , .	0.4	16
18	Experimental proof of concept of a pilot-scale thermochemical storage unit. AIP Conference Proceedings, 2017, , .	0.4	11

2

#	Article	IF	CITATIONS
19	Characterization of Qatar's surface carbonates for CO2 capture and thermochemical energy storage. AIP Conference Proceedings, 2017, , .	0.4	1
20	Recent Advances in Diesel Particulate Emission Control. The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2017, 2017.9, A313.	0.1	0
21	A Heterogeneous Multiscale Dynamic Model for Simulation of Catalytic Reforming Reactors. International Journal of Chemical Kinetics, 2016, 48, 239-252.	1.6	11
22	Co3O4-based honeycombs as compact redox reactors/heat exchangers for thermochemical storage in the next generation CSP plants. AIP Conference Proceedings, 2016, , .	0.4	6
23	Development and evaluation of materials for thermochemical heat storage based on the CaO/CaCO3 reaction couple. AIP Conference Proceedings, 2016, , .	0.4	17
24	Study of Oxidation and Combustion Characteristics of Iron Nanoparticles under Idealized and Enginelike Conditions. Energy & Samp; Fuels, 2016, 30, 4318-4330.	5.1	21
25	Zinc-copper oxide coated monolithic reactors for high capacity hydrogen sulphide removal from gaseous streams. International Journal of Hydrogen Energy, 2016, 41, 21251-21260.	7.1	7
26	Catalytic Soot Oxidation: Effect of Ceria-Zirconia Catalyst Particle Size. SAE International Journal of Engines, 2016, 9, 1709-1719.	0.4	4
27	Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: Multi-cyclic assessment and semi-quantitative heat effects estimations. Solar Energy, 2016, 133, 394-407.	6.1	79
28	Toxicity assessment and comparison between two types of iron oxide nanoparticles in Mytilus galloprovincialis. Aquatic Toxicology, 2016, 172, 9-20.	4.0	49
29	Soot Oxidation Kinetics of Different Ceria Nanoparticle Catalysts. Emission Control Science and Technology, 2015, 1, 247-253.	1.5	20
30	Impact of Combination of EGR, SCR, and DPF Technologies for the Low-Emission Rail Diesel Engines. Emission Control Science and Technology, 2015, 1, 213-225.	1.5	28
31	Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants. Solar Energy, 2015, 122, 215-230.	6.1	89
32	Diesel Fuel Desulfurization via Adsorption with the Aid of Activated Carbon: Laboratory- and Pilot-Scale Studies. Energy & Energy	5.1	26
33	Solar Hydrogen Production. Biofuels and Biorefineries, 2015, , 283-311.	0.5	1
34	Friction Coefficient and Mobility Radius of Fractal-Like Aggregates in the Transition Regime. Aerosol Science and Technology, 2014, 48, 1320-1331.	3.1	14
35	Improved kinetic model for water splitting thermochemical cycles using Nickel Ferrite. International Journal of Hydrogen Energy, 2014, 39, 6317-6327.	7.1	23
36	Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants. Solar Energy, 2014, 108, 146-163.	6.1	95

#	Article	lF	Citations
37	Morphology and mobility of synthetic colloidal aggregates. Journal of Colloid and Interface Science, 2014, 417, 27-36.	9.4	27
38	Study of Basic Oxidation and Combustion Characteristics of Aluminum Nanoparticles under Enginelike Conditions. Energy & Study 28, 3430-3441.	5.1	37
39	Development of an on-line exposure system to determine freshly produced diesel engine emission-induced cellular effects. Toxicology in Vitro, 2013, 27, 1746-1752.	2.4	9
40	Hydrogen production via solarâ€aided water splitting thermochemical cycles with nickel ferrite: Experiments and modeling. AICHE Journal, 2013, 59, 1213-1225.	3.6	67
41	Emission Reduction Technologies for the Future Low Emission Rail Diesel Engines: EGR vs SCR., 2013,,.		15
42	Improved Transfer Coefficients for Wall-Flow Monolithic Catalytic Reactors: Energy and Momentum Transport. Industrial & Engineering Chemistry Research, 2012, 51, 13062-13072.	3.7	22
43	Effect of seeding on hydrogen and carbon particle production in a 10ÂMW solar thermal reactor for methane decomposition. International Journal of Hydrogen Energy, 2012, 37, 16570-16580.	7.1	11
44	The Micromechanics of Catalytic Soot Oxidation in Diesel Particulate Filters., 2012,,.		5
45	Twoâ€dimensional model of methane thermal decomposition reactors with radiative heat transfer and carbon particle growth. AICHE Journal, 2012, 58, 2545-2556.	3.6	13
46	Hydrogen production via sulfur-based thermochemical cycles: Part 3: Durability and post-characterization of silicon carbide honeycomb substrates coated with metal oxide-based candidate catalysts for the sulfuric acid decomposition step. International Journal of Hydrogen Energy, 2012, 37, 8190-8203.	7.1	33
47	Hydrogen production via solar-aided water splitting thermochemical cycles: Combustion synthesis and preliminary evaluation of spinel redox-pair materials. International Journal of Hydrogen Energy, 2012, 37, 8964-8980.	7.1	85
48	One-dimensional model of solar thermal reactors for the co-production of hydrogen and carbon black from methane decomposition. International Journal of Hydrogen Energy, 2011, 36, 189-202.	7.1	17
49	Hydrogen production via sulfur-based thermochemical cycles: Part 1: Synthesis and evaluation of metal oxide-based candidate catalyst powders for the sulfuric acid decomposition step. International Journal of Hydrogen Energy, 2011, 36, 2831-2844.	7.1	53
50	Hydrogen production via sulfur-based thermochemical cycles: Part 2: Performance evaluation of Fe2O3-based catalysts for the sulfuric acid decomposition step. International Journal of Hydrogen Energy, 2011, 36, 6496-6509.	7.1	71
51	Oxide Nanoparticles for Hydrogen Production from Water-Splitting and Catalytic Oxidation of Diesel Exhaust Emissions. Nanoscience and Nanotechnology Letters, 2011, 3, 697-704.	0.4	7
52	Solar hydrogen: fuel of the near future. Energy and Environmental Science, 2010, 3, 279.	30.8	126
53	Gas and liquid phase fuels desulphurization for hydrogen production via reforming processes. International Journal of Hydrogen Energy, 2009, 34, 4953-4962.	7.1	27
54	Aerosol spray pyrolysis synthesis of water-splitting ferrites for solar hydrogen production. Granular Matter, 2008, 10, 113-122.	2.2	53

#	Article	IF	CITATIONS
55	Update on the Science and Technology of Diesel Particulate Filters. KONA Powder and Particle Journal, 2008, 26, 36-65.	1.7	46
56	Advances in the science and technology of diesel particulate filter simulation. Advances in Chemical Engineering, 2007, , 213-294.	0.9	38
57	Application of Digital Material Methods to Silicon Carbide Diesel Particulate Filters. , 2007, , .		5
58	Soot Oxidation Kinetics in Diesel Particulate Filters., 2007,,.		22
59	Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. Solar Energy Materials and Solar Cells, 2007, 91, 474-488.	6.2	185
60	Hydrogen production in solar reactors. Catalysis Today, 2007, 127, 265-277.	4.4	71
61	Particle sticking/rebound criteria at oblique impact. Journal of Aerosol Science, 2006, 37, 292-305.	3.8	83
62	A Multi-Reactor Assembly for Screening of Diesel Particulate Filters. , 2006, , .		18
63	Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides. Journal of Solar Energy Engineering, Transactions of the ASME, 2006, 128, 125-133.	1.8	140
64	Urban guerrilla activities in Greece. Technological Forecasting and Social Change, 2005, 72, 49-58.	11.6	3
64	Urban guerrilla activities in Greece. Technological Forecasting and Social Change, 2005, 72, 49-58. Effect of soot layer microstructure on diesel particulate filter regeneration. AICHE Journal, 2005, 51, 2534-2546.	11.6 3.6	3 25
	Effect of soot layer microstructure on diesel particulate filter regeneration. AICHE Journal, 2005, 51,		
65	Effect of soot layer microstructure on diesel particulate filter regeneration. AICHE Journal, 2005, 51, 2534-2546.		25
65	Effect of soot layer microstructure on diesel particulate filter regeneration. AICHE Journal, 2005, 51, 2534-2546. Progress in Diesel Particulate Filter Simulation., 2005,,.		25 80
65 66 67	Effect of soot layer microstructure on diesel particulate filter regeneration. AICHE Journal, 2005, 51, 2534-2546. Progress in Diesel Particulate Filter Simulation., 2005,,. Catalytic Filter Systems with Direct and Indirect Soot Oxidation Activity., 2005,,. Multi-channel simulation of regeneration in honeycomb monolithic diesel particulate filters.	3.6	25 80 33
65 66 67 68	Effect of soot layer microstructure on diesel particulate filter regeneration. AICHE Journal, 2005, 51, 2534-2546. Progress in Diesel Particulate Filter Simulation., 2005, , . Catalytic Filter Systems with Direct and Indirect Soot Oxidation Activity., 2005, , . Multi-channel simulation of regeneration in honeycomb monolithic diesel particulate filters. Chemical Engineering Science, 2003, 58, 3273-3283. Cluster–Cluster Aggregation Kinetics and Primary Particle Growth of Soot Nanoparticles in Flame by	3.6	25 80 33 65
65 66 67 68	Effect of soot layer microstructure on diesel particulate filter regeneration. AICHE Journal, 2005, 51, 2534-2546. Progress in Diesel Particulate Filter Simulation., 2005,,. Catalytic Filter Systems with Direct and Indirect Soot Oxidation Activity., 2005,,. Multi-channel simulation of regeneration in honeycomb monolithic diesel particulate filters. Chemical Engineering Science, 2003, 58, 3273-3283. Clusterâ6°Cluster Aggregation Kinetics and Primary Particle Growth of Soot Nanoparticles in Flame by Light Scattering and Numerical Simulations. Journal of Colloid and Interface Science, 2002, 247, 33-46. Evolution of aggregate size and fractal dimension during Brownian coagulation. Journal of Aerosol	3.6 3.8 9.4	25 80 33 65

#	Article	IF	CITATIONS
73	Inertial deposition of particles from potential flows past cylinder arrays. Journal of Aerosol Science, 1993, 24, 471-483.	3.8	23
74	Fundamental Studies of Diesel Particulate Filters: Transient Loading, Regeneration and Aging. , 0, , .		331
75	Inertial Contributions to the Pressure Drop of Diesel Particulate Filters. , 0, , .		97
76	Microstructural Properties of Soot Deposits in Diesel Particulate Traps., 0,,.		112
77	Flow Resistance Descriptors for Diesel Particulate Filters: Definitions, Measurements and Testing. , 0, , .		82
78	Wall-scale Reaction Models in Diesel Particulate Filters. , 0, , .		12
79	Catalytic Nano-structured Materials for Next Generation Diesel Particulate Filters. SAE International Journal of Materials and Manufacturing, 0, 1, 189-198.	0.3	15
80	A Methodology for the Fast Evaluation of the Effect of Ash Aging on the Diesel Particulate Filter Performance. , 0, , .		26
81	Novel Monolithic Reactors for Solar Thermochemical Water Splitting. , 0, , 621-639.		1