Gui-Min Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5228964/publications.pdf Version: 2024-02-01

CILI-MIN XUE

#	Article	IF	CITATIONS
1	Highly Oxidized Guaianolide Sesquiterpenoids with Potential Anti-inflammatory Activity from <i>Chrysanthemum indicum</i> . Journal of Natural Products, 2018, 81, 378-386.	3.0	42
2	Artemisians A–D, Diseco-guaianolide Involved Heterodimeric [4 + 2] Adducts from <i>Artemisia argyi</i> . Organic Letters, 2017, 19, 5410-5413.	4.6	38
3	Artemisianins A-D, new stereoisomers of seco-guaianolide involved heterodimeric [4+2] adducts from Artemisia argyi induce apoptosis via enhancement of endoplasmic reticulum stress. Bioorganic Chemistry, 2019, 84, 295-301.	4.1	26
4	Hypatulone A, a Homoadamantane-Type Acylphloroglucinol with an Intricately Caged Core from <i>Hypericum patulum</i> . Organic Letters, 2018, 20, 7953-7956.	4.6	23
5	Lactone ring-opening seco-guaianolide involved heterodimers linked via an ester bond from Artemisia argyi with NO inhibitory activity. Fìtoterapìâ, 2019, 132, 94-100.	2.2	22
6	Lycibarbarines A–C, Three Tetrahydroquinoline Alkaloids Possessing a Spiro-Heterocycle Moiety from the Fruits of <i>Lycium barbarum</i> . Organic Letters, 2021, 23, 858-862.	4.6	14
7	Sesquiterpenoids from <i>Artemisia argyi</i> and their NO production inhibitory activity in RAW264.7 cells. Natural Product Research, 2021, 35, 2887-2894.	1.8	10
8	Structure and absolute configuration assignments of ochracines F–L, chamigrane and cadinane sesquiterpenes from the basidiomycete <i>Steccherinum ochraceum</i> HFG119. RSC Advances, 2021, 11, 18693-18701.	3.6	8
9	Isolation, Chiral-Phase Resolution, and Determination of the Absolute Configurations of a Complete Series of Stereoisomers of a Rearranged Acetophenone with Three Stereocenters. Journal of Natural Products, 2019, 82, 1399-1404.	3.0	7
10	Germacranolide- and guaianolide-type sesquiterpenoids from Achillea alpina L. reduce insulin resistance in palmitic acid-treated HepC2 cells via inhibition of the NLRP3 inflammasome pathway. Phytochemistry, 2022, 202, 113297.	2.9	7
11	Unusual constituents from the medicinal mushroom <i>Ganoderma lingzhi</i> . RSC Advances, 2019, 9, 36931-36939.	3.6	6
12	Penispidins A–C, Aromatic Sesquiterpenoids from <i>Penicillium virgatum</i> and Their Inhibitory Effects on Hepatic Lipid Accumulation. Journal of Natural Products, 2021, 84, 2623-2629.	3.0	6
13	1,10-seco guaianolide-type sesquiterpenoids from <i>Chrysanthemum indicum</i> . Journal of Asian Natural Products Research, 2021, 23, 877-883.	1.4	5
14	Neuroinflammatory inhibitors from <i>Gardneria nutans</i> Siebold & Zuccarini. RSC Advances, 2021, 11, 27085-27091.	3.6	5
15	Ochracines A-E, chamigrane-related norsesquiterpene derivatives from the basidiomycete Steccherinum ochraceum HFG119. Fìtoterapìâ, 2019, 139, 104362.	2.2	4
16	Hypeisoxazole A, a Racemic Pair of Tetrahydroisoxazole-Fused Benzylisoquinoline Alkaloids from <i>Hypecoum erectum</i> and Structural Revision of Hypecoleptopine. Organic Letters, 2022, 24, 1476-1480.	4.6	4
17	Two new guaianolide-type sesquiterpenoids with NO inhibitory activity from <i>Chrysanthemum indicum</i> . Journal of Asian Natural Products Research, 2023, 25, 316-323.	1.4	4
18	Two new flavonoid glucosides from the fruits of <i>Sinopodophyllum hexandrum</i> . Natural Product Research, 2021, 35, 2164-2169.	1.8	2

#	Article	IF	CITATIONS
19	Fissisternoids A and B, two 2′,5′-quinodihydrochalcone-based meroterpenoid enantiomers with unusual carbon skeletons from <i>Fissistigma bracteolatum</i> . Organic Chemistry Frontiers, 2021, 9, 190-196.	4.5	2
20	Iridoid glycosides isolated from Nardostachys chinensis batal with NO production inhibitory activity. Natural Product Research, 2020, , 1-7.	1.8	1
21	LSD1 inhibitors from the roots of Pueraria lobata. Journal of Asian Natural Products Research, 2022, , 1-9.	1.4	1