
Bobo Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/522886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light amplified oxidative stress in tumor microenvironment by carbonized hemin nanoparticles for boosting photodynamic anticancer therapy. Light: Science and Applications, 2022, 11, 47.	7.7	27
2	In Vivo Flow Cytometry. Advances in Experimental Medicine and Biology, 2021, 3233, 289-305.	0.8	1
3	Fundamentals of Optical Imaging. Advances in Experimental Medicine and Biology, 2021, 3233, 1-22.	0.8	1
4	Near-infrared light excited photodynamic anticancer therapy based on UCNP@AIEgen nanocomposite. Nanoscale Advances, 2021, 3, 2325-2333.	2.2	9
5	Noninvasive and real-time monitoring of Au nanoparticle promoted cancer metastasis using in vivo flow cytometry. Biomedical Optics Express, 2021, 12, 1846.	1.5	5
6	Rapid exÂvivo assessment of cancer prognosis by fluorescence imaging of nucleolus using nitrogen doped carbon dots. Analytica Chimica Acta, 2021, 1154, 338309.	2.6	11
7	Photodynamic therapy reduces metastasis of breast cancer by minimizing circulating tumor cells. Biomedical Optics Express, 2021, 12, 3878.	1.5	7
8	Ratiometric Raman nanotags enable intraoperative detection of metastatic sentinel lymph node. Biomaterials, 2021, 276, 121070.	5.7	12
9	Noninvasive and early diagnosis of acquired brain injury using fluorescence imaging in the NIR-II window. Biomedical Optics Express, 2021, 12, 6984.	1.5	4
10	Binary Organic Nanoparticles with Bright Aggregation-Induced Emission for Three-Photon Brain Vascular Imaging. Chemistry of Materials, 2020, 32, 6437-6443.	3.2	41
11	Flexible porphyrin doped polymer optical fibers for rapid and remote detection of trace DNT vapor. Analyst, The, 2020, 145, 5307-5313.	1.7	9
12	Nucleolusâ€Targeted Photodynamic Anticancer Therapy Using Renal learable Carbon Dots. Advanced Healthcare Materials, 2020, 9, e2000607.	3.9	61
13	<i>In vitro</i> anticancer activity of AlEgens. Biomaterials Science, 2019, 7, 3855-3865.	2.6	10
14	Recent advances in copper sulphide-based nanoheterostructures. Chemical Society Reviews, 2019, 48, 4950-4965.	18.7	85
15	Tunable hybridization induced transparency for efficient terahertz sensing. Optics Express, 2019, 27, 9032.	1.7	10
16	Reversible and Fast Responsive Optical Fiber Relative Humidity Sensor Based on Polyelectrolyte Self-Assembly Multilayer Film. IEEE Sensors Journal, 2018, 18, 1081-1086.	2.4	16
17	Strategies to Overcome the Limitations of AlEgens in Biomedical Applications. Small Methods, 2018, 2, 1700392.	4.6	37
18	Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Coordination Chemistry Reviews, 2018, 376, 348-392.	9.5	179

Вово Gu

#	Article	IF	CITATIONS
19	Precise Twoâ€Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregationâ€Induced Emission Characteristics. Advanced Materials, 2017, 29, 1701076.	11.1	258
20	Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives. Coordination Chemistry Reviews, 2017, 339, 138-152.	9.5	58
21	Functionalized 2D nanomaterials for gene delivery applications. Coordination Chemistry Reviews, 2017, 347, 77-97.	9.5	73
22	Resonance Raman Probes for Organelle-Specific Labeling in Live Cells. Scientific Reports, 2016, 6, 28483.	1.6	33
23	Fiber Loop Laser Stabilized by Fano Resonance in Metallic Grating Coupled Resonator. IEEE Photonics Technology Letters, 2016, 28, 1597-1600.	1.3	1
24	In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space. Biomaterials, 2016, 104, 78-86.	5.7	25
25	Molecular nonlinear optics: recent advances and applications. Advances in Optics and Photonics, 2016, 8, 328.	12.1	100
26	Optimal coupling to high-Q whispering gallery modes with a sub-wavelength metallic grating coupler. Proceedings of SPIE, 2015, , .	0.8	0
27	Lasing in nanocomposite random media. Nano Today, 2015, 10, 168-192.	6.2	239
28	Controlled excitation of higher radial order whispering gallery modes with metallic diffraction grating. Optics Express, 2015, 23, 4991.	1.7	4
29	Power transfer mechanism of metallic grating coupled whispering gallery microsphere resonator. Optics Letters, 2015, 40, 1908.	1.7	4
30	Fiber-integrated 780 nm source for visible parametric generation. Optics Express, 2014, 22, 29726.	1.7	7
31	Reflective liquid level sensor based on modes conversion in thin-core fiber incorporating titled fiber Bragg grating. Optics Express, 2014, 22, 11834.	1.7	55
32	High-performance reflective liquid level sensor based on titled fiber Bragg grating inscribed in the thin-core fiber. , 2014, , .		2
33	Simple and compact reflective refractometer based on tilted fiber Bragg grating inscribed in thin-core fiber. Optics Letters, 2014, 39, 22.	1.7	48
34	Fiber-optic chemical probe based on titled fiber Bragg grating inscribed in the thin-core fiber. , 2013, , .		0
35	Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber. Optics Letters, 2012, 37, 794.	1.7	46
36	Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution. Analytical Methods, 2012, 4, 1292.	1.3	18

Вово Gu

#	Article	IF	CITATIONS
37	Temperature Compensated Strain Sensor Based on Cascaded Sagnac Interferometers and All-Solid Birefringent Hybrid Photonic Crystal Fibers. IEEE Sensors Journal, 2012, 12, 1641-1646.	2.4	26
38	Biocompatible Fiber-Optic pH Sensor Based on Optical Fiber Modal Interferometer Self-Assembled With Sodium Alginate/Polyethylenimine Coating. IEEE Sensors Journal, 2012, 12, 1477-1482.	2.4	39
39	Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber â€ʿmodal interferometer. Optics Express, 2011, 19, 4140.	1.7	110
40	Fiber-optic metal ion sensor based on thin-core fiber modal interferometer with nanocoating self-assembled via hydrogen bonding. Sensors and Actuators B: Chemical, 2011, 160, 1174-1179.	4.0	24
41	Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating. Analytical and Bioanalytical Chemistry, 2011, 399, 3623-3631.	1.9	49
42	All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature. , 2011, , .		3
43	Quasi-distributed sensing network based on coherence multiplexing and spatial division multiplexing for coal mine security monitoring. Journal of Zhejiang University: Science C, 2010, 11, 762-766.	0.7	Ο
44	Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers. Optics Communications, 2010, 283, 2136-2139.	1.0	95
45	Core mode scatterer and fibre end-face mirror incorporated reflective long-period grating sensors. Electronics Letters, 2010, 46, 710.	0.5	2
46	Cladding-Mode-Recoupling-Based Tilted Fiber Bragg Grating Sensor With a Core-Diameter-Mismatched Fiber Section. IEEE Photonics Journal, 2010, 2, 152-157.	1.0	36
47	A novel fast response fiber-optic pH sensor based on nanoporous self-assembled multilayer films. Journal of Materials Chemistry, 2010, 20, 7754.	6.7	26
48	Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer. Optics Express, 2009, 17, 22296.	1.7	146
49	A Novel Fiber Length Measurement Technology Based on an Asymmetric Interferometer Incorporating an Electron-Optic Modulator. , 2008, , .		0