Nadezhda A Nebogatikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5228216/publications.pdf

Version: 2024-02-01

41 567 14 22 g-index

42 42 42 42 617

42 42 42 617 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Graphene/Hexagonal Boron Nitride Composite Nanoparticles for 2D Printing Technologies. Advanced Engineering Materials, 2022, 24, 2100917.	1.6	5
2	Nanostructuring of CVD graphene by high-energy heavy ions. Diamond and Related Materials, 2022, 123, 108880.	1.8	4
3	Memristive FG–PVA Structures Fabricated with the Use of High Energy Xe Ion Irradiation. Materials, 2022, 15, 2085.	1.3	O
4	Graphene: Hexagonal Boron Nitride Composite Films with Low-Resistance for Flexible Electronics. Nanomaterials, 2022, 12, 1703.	1.9	7
5	Growth of Bi2Se3/graphene heterostructures with the room temperature high carrier mobility. Journal of Materials Science, 2021, 56, 9330-9343.	1.7	9
6	Composite Nanoparticles Based on h-BN and Graphene for 2D Printing., 2021,,.		0
7	Electrochemically exfoliated thin Bi ₂ Se ₃ films and van der Waals heterostructures Bi ₂ Se ₃ /graphene. Nanotechnology, 2020, 31, 125602.	1.3	7
8	Recognition of Spatial Distribution of CNT and Graphene in Hybrid Structure by Mapping with Coherent Anti-Stokes Raman Microscopy. Nanoscale Research Letters, 2020, 15, 37.	3.1	7
9	Fluorinated graphene nanoparticles with $1\hat{a}\in$ 3 nm electrically active graphene quantum dots. Nanotechnology, 2020, 31, 295602.	1.3	8
10	Flexibility of Fluorinated Graphene-Based Materials. Materials, 2020, 13, 1032.	1.3	7
11	Vapor growth of Bi2Se3 and Bi2O2Se crystals on mica. Materials Research Bulletin, 2020, 129, 110906.	2.7	3
12	Graphene-PEDOT: PSS Humidity Sensors for High Sensitive, Low-Cost, Highly-Reliable, Flexible, and Printed Electronics. Materials, 2019, 12, 3477.	1.3	25
13	Resistive switching effects in fluorinated graphene films with graphene quantum dots enhanced by polyvinyl alcohol. Nanotechnology, 2019, 30, 255701.	1.3	14
14	Fluorinated graphene suspension for flexible and printed electronics: Flakes, 2D films, and heterostructures. Materials and Design, 2019, 164, 107526.	3.3	27
15	Swift heavy-ion irradiation of graphene oxide: Localized reduction and formation of sp-hybridized carbon chains. Carbon, 2019, 141, 390-399.	5.4	17
16	Access to lanthanoid telluride nanoparticles: Liquid exfoliation of LnTe3 (Lnâ€=â€La, Ho). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 228, 261-266.	1.7	4
17	Synthesis, Crystal Structure, and Liquid Exfoliation of Layered Lanthanide Sulfides KLn ₂ CuS ₆ (Ln = La, Ce, Pr, Nd, Sm). Inorganic Chemistry, 2018, 57, 13594-13605.	1.9	6
18	Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties. Nanoscale, 2018, 10, 14499-14509.	2.8	39

#	Article	IF	Citations
19	Films fabricated from partially fluorinated graphene suspension: structural, electronic properties and negative differential resistance. Nanotechnology, 2017, 28, 074001.	1.3	21
20	A DFT study and experimental evidence of the sonication-induced cleavage of molybdenum sulfide Mo ₂ S ₃ in liquids. Journal of Materials Chemistry C, 2017, 5, 6601-6610.	2.7	13
21	Optical and electronic properties of the partially fluorinated graphene suspensions and films. Journal of Materials Science, 2017, 52, 10993-11003.	1.7	2
22	Mechanism of resistive switching in films based on partially fluorinated graphene. Semiconductors, 2017, 51, 1306-1312.	0.2	3
23	Colloidal dispersions of molybdenum disulfide with a narrow particle size distribution. Russian Chemical Bulletin, 2017, 66, 963-968.	0.4	2
24	Two-layer and composite films based on oxidized and fluorinated graphene. Physical Chemistry Chemical Physics, 2017, 19, 19010-19020.	1.3	19
25	Fluorinated graphene films with graphene quantum dots for electronic applications. Journal of Applied Physics, 2016, 119, .	1.1	12
26	Fluorinated graphene suspension for inkjet printed technologies. Nanotechnology, 2016, 27, 205601.	1.3	17
27	Graphene suspensions for 2D printing. Technical Physics Letters, 2016, 42, 438-441.	0.2	15
28	Resistive switching effect and traps in partially fluorinated graphene films. Journal Physics D: Applied Physics, 2016, 49, 095303.	1.3	16
29	Synthesis, Crystal Structure, and Colloidal Dispersions of Vanadium Tetrasulfide (VS ₄). Chemistry - A European Journal, 2015, 21, 4639-4645.	1.7	76
30	Fluorinated graphene dielectric films obtained from functionalized graphene suspension: preparation and properties. Physical Chemistry Chemical Physics, 2015, 17, 13257-13266.	1.3	51
31	Modulation of current in self-forming lateral graphene-based heterostructures. Technical Physics Letters, 2015, 41, 950-953.	0.2	4
32	Self-organized arrays of graphene and few-layer graphene quantum dots in fluorographene matrix: Charge transient spectroscopy. Applied Physics Letters, 2014, 104, 193108.	1.5	16
33	Light-assisted recharging of graphene quantum dots in fluorographene matrix. Journal of Applied Physics, 2014, 116, 134310.	1.1	6
34	Functionalization of graphene and few-layer graphene films in an hydrofluoric acid aqueous solution. Nanotechnologies in Russia, 2014, 9, 51-59.	0.7	24
35	Producing arrays of graphene and few-layer graphene quantum dots in a fluorographene matrix. Optoelectronics, Instrumentation and Data Processing, 2014, 50, 298-303.	0.2	1
36	Graphene quantum dots in fluorographene matrix formed by means of chemical functionalization. Carbon, 2014, 77, 1095-1103.	5.4	29

#	Article	IF	CITATIONS
37	Functionalization of graphene and few-layer graphene with aqueous solution of hydrofluoric acid. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 52, 106-111.	1.3	43
38	Hydrofluoric acid modifications of graphene films. , 2011, , .		0
39	Structure and properties of Li2Zn2(MoO4)3 crystals activated with copper and chromium ions. Journal of Structural Chemistry, 2011, 52, 708-712.	0.3	4
40	EPR study of solid solutions of [Cr(NH3)5Cl] x [Rh(NH3)5Cl]1â^'x [PdCl4]·nH2O and [Cr(NH3)5Cl] x [Rh(NH3)5Cl]1â^'x [PtCl4] compounds. Journal of Structural Chemistry, 2009, 50, 915-918.	0.3	1
41	Fluorinated Graphene Dielectric and Functional Layers for Electronic Applications. , 0, , .		3