Isabel Sayago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5228203/publications.pdf

Version: 2024-02-01

218592 243529 2,153 92 26 44 citations h-index g-index papers 93 93 93 2315 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rapid and Non-Destructive Analysis of Corky Off-Flavors in Natural Cork Stoppers by a Wireless and Portable Electronic Nose. Sensors, 2022, 22, 4687.	2.1	1
2	Resistive gas sensors based on MoS2 nanosheets with high response to low NO2 concentrations. , 2021, , .		O
3	Automation and optimization device for the fabrication of sensors with nanomaterials., 2021,,.		2
4	Graphene-Doped Tin Oxide Nanofibers and Nanoribbons as Gas Sensors to Detect Biomarkers of Different Diseases through the Breath. Sensors, 2020, 20, 7223.	2.1	13
5	Air quality monitoring using nanosensors. , 2020, , 9-31.		3
6	Inkjet Printed Graphene-Based Nanosensors for the Detection of Nitrogen Dioxide. Lecture Notes in Electrical Engineering, 2020, , 431-436.	0.3	0
7	Outstanding NO2 Sensing Performance of Sensors Based on TiO2/Graphene Hybrid. Lecture Notes in Electrical Engineering, 2020, , 349-355.	0.3	1
8	Hand-Held Electronic Nose to Detect Biomarkers of Diseases Through Breath. Lecture Notes in Electrical Engineering, 2020, , 43-48.	0.3	1
9	Development of Tin Oxide-Based Nanosensors for Electronic Nose Environmental Applications. Biosensors, 2019, 9, 21.	2.3	27
10	Chemiresistive sensors based on electrospun tin oxide nanofibers for detecting NO $<$ sub $>$ 2 $<$ /sub $>$ at the sub-0.1 ppm level. , 2019, , .		4
11	Gas sensors based on elasticity changes of nanoparticle layers. Sensors and Actuators B: Chemical, 2018, 268, 93-99.	4.0	19
12	Nanostructured Tin Oxide Sensors Based on Nanofibers and Nanowires for Detection of Low NO < inf > 2 < / inf > concentration. , 2018, , .		0
13	Study of Graphene Based Nanosensors for the Detection of Nitrogen Dioxide. , 2018, , .		3
14	Love wave toluene sensor based on multi-guiding layers. , 2017, , .		1
15	ZnO and ZnO/SnO <inf>2</inf> nanofibers as resistive gas sensors for NO <inf>2</inf> detection. , 2017, , .		1
16	Detection of low levels of NO <inf>2</inf> with electrospun tin dioxide nanofibers based sensors. , 2017, , .		0
17	Tin Dioxide-Graphene Based Chemi-Device for NO2 Detection in the Sub ppm Range. Proceedings (mdpi), 2017, 1, .	0.2	5
18	Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants. Talanta, 2016, 148, 393-400.	2.9	95

#	Article	IF	Citations
19	A Wireless and Portable Electronic Nose to Differentiate Musts of Different Ripeness Degree and Grape Varieties. Sensors, 2015, 15, 8429-8443.	2.1	33
20	Synthesis and characterization of SnO $<$ inf $>$ 2 $<$ /inf $>$ nanowires grown by CVD for application as gas sensors. , 2015, , .		2
21	Liquid characterization by means of Love-wave device combined with microfluidic platform. , 2015, , .		0
22	Use of an electronic nose as a tool to differentiate winemaking techniques. , 2015, , .		3
23	Real-Time Characterization of Electrospun PVP Nanofibers as Sensitive Layer of a Surface Acoustic Wave Device for Gas Detection. Journal of Nanomaterials, 2014, 2014, 1-8.	1.5	8
24	Nanocrystalline Tin Oxide Nanofibers Deposited by a Novel Focused Electrospinning Method. Application to the Detection of TATP Precursors. Sensors, 2014, 14, 24231-24243.	2.1	23
25	Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers. Talanta, 2014, 120, 408-412.	2.9	22
26	Carbon nanotube-based SAW sensors. , 2013, , .		5
27	Carbon nanotube/TiO <inf>2</inf> nanotube hybrid films as resistive gas sensor. , 2013, , .		2
28	Wireless and portable sensor system to differentiate musts of different grape varieties and degree of grape ripeness., $2013,$		0
29	Carbon nanotube networks as sensitive layers for resistive gas sensor applications. Nanopages, 2013, 8, 15-26.	0.2	2
30	New sensitive layers for surface acoustic wave gas sensors based on polymer and carbon nanotube composites. Sensors and Actuators B: Chemical, 2012, 175, 67-72.	4.0	61
31	New sensitive layers for surface acoustic wave gas sensors based on polymer and carbon nanotube composites. Procedia Engineering, 2011, 25, 256-259.	1.2	3
32	Single-walled carbon nanotube microsensors for nerve agent simulant detection. Sensors and Actuators B: Chemical, 2011, 157, 253-259.	4.0	27
33	Surface acoustic wave gas sensors based on polyisobutylene and carbon nanotube composites. Sensors and Actuators B: Chemical, 2011, 156, 1-5.	4.0	40
34	Detection of stress through sweat analysis with an electronic nose. , 2009, , .		3
35	Analysis of grape variety and denomination of origin of several wines with an artificial nose. , 2009, , .		4
36	Portable e-nose to classify different kinds of wine. Sensors and Actuators B: Chemical, 2008, 131, 71-76.	4.0	99

3

#	Article	IF	CITATIONS
37	Application of pulsed digital oscillators to volatile organic compounds sensing. Sensors and Actuators B: Chemical, 2008, 134, 773-779.	4.0	18
38	Carbon nanotube networks as gas sensors for NO2 detection. Talanta, 2008, 77, 758-764.	2.9	117
39	Novel gas sensors based on carbon nanotube networks. Journal of Physics: Conference Series, 2008, 127, 012012.	0.3	3
40	Multi-Walled Carbon Nanotube Networks As Gas Sensors for NO2 Detection., 2007,,.		1
41	Optic fiber used as sensor to measure low hydrogen concentrations. , 2007, , .		1
42	NO2 detection with Single Walled Carbon Nanotube Networks. , 2007, , .		3
43	Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations., 2007,,.		4
44	Novel selective sensors based on carbon nanotube films for hydrogen detection. Sensors and Actuators B: Chemical, 2007, 122, 75-80.	4.0	99
45	Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors. Sensors and Actuators B: Chemical, 2007, 127, 277-283.	4.0	43
46	Differentiation of red wines using an electronic nose based on surface acoustic wave devices. Talanta, 2006, 68, 1162-1165.	2.9	39
47	Wine classification with a zinc oxide SAW sensor array. Sensors and Actuators B: Chemical, 2006, 120, 166-171.	4.0	44
48	Optimization of SAW sensors with a structure ZnO–SiO2–Si to detect volatile organic compounds. Sensors and Actuators B: Chemical, 2006, 118, 356-361.	4.0	35
49	Identification of typical wine aromas by means of an electronic nose. IEEE Sensors Journal, 2006, 6, 173-178.	2.4	68
50	The effect of the oxygen concentration and the rf power on the zinc oxide films properties deposited by magnetron sputtering. Applied Surface Science, 2005, 245, 273-280.	3.1	42
51	Sprayed Carbon Nanotube Thin Films as Hydrogen Sensors. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	0
52	Structural studies of zinc oxide films grown by RF magnetron sputtering. Synthetic Metals, 2005, 148, 37-41.	2.1	21
53	Hydrogen sensors based on carbon nanotubes thin films. Synthetic Metals, 2005, 148, 15-19.	2.1	183
54	A comparative study of sensor array and GC–MS: application to Madrid wines characterization. Sensors and Actuators B: Chemical, 2004, 102, 299-307.	4.0	54

#	Article	IF	Citations
55	Detection of volatile organic compounds using surface acoustic wave sensors with different polymer coatings. Thin Solid Films, 2004, 467, 234-238.	0.8	51
56	Discrimination of different aromatic compounds in water, ethanol and wine with a thin film sensor array. Sensors and Actuators B: Chemical, 2004, 103, 98-103.	4.0	25
57	Analysis of neural networks and analysis of feature selection with genetic algorithm to discriminate among pollutant gas. Sensors and Actuators B: Chemical, 2004, 103, 122-128.	4.0	46
58	Fine-tuning of the resonant frequency using a hybrid coupler and fixed components in SAW oscillators for gas detection. Sensors and Actuators B: Chemical, 2004, 103, 139-144.	4.0	15
59	Electronic nose for the identification of pig feeding and ripening time in Iberian hams. Meat Science, 2004, 66, 727-732.	2.7	31
60	Artificial olfactory system for the classification of Iberian hams. Sensors and Actuators B: Chemical, 2003, 96, 621-629.	4.0	16
61	Detection of Iberian ham aroma by a semiconductor multisensorial system. Meat Science, 2003, 65, 1175-1185.	2.7	14
62	Sensor array for the monitoring of contaminant gases. , 2003, , .		0
63	Detection of toxic gases by a tin oxide multisensor. IEEE Sensors Journal, 2002, 2, 387-393.	2.4	23
64	Pulsed laser deposition of nanostructured tin oxide films for gas sensing applications. Sensors and Actuators B: Chemical, 2001, 77, 383-388.	4.0	79
65	Results on the reliability of silicon micromachined structures for semiconductor gas sensors. Sensors and Actuators B: Chemical, 2001, 77, 409-415.	4.0	29
66	Detection of gases with arrays of micromachined tin oxide gas sensors. Sensors and Actuators B: Chemical, 2000, 65, 244-246.	4.0	40
67	Discrimination of grape juice and fermented wine using a tin oxide multisensor. Sensors and Actuators B: Chemical, 1999, 57, 249-254.	4.0	18
68	Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors. Sensors and Actuators B: Chemical, 1999, 58, 325-329.	4.0	50
69	Environmental applications of gas sensor arrays: combustion atmospheres and contaminated soils. Sensors and Actuators B: Chemical, 1999, 59, 249-254.	4.0	20
70	Electrical characterization of a thin film tin oxide sensor array for VOCs detection. Thin Solid Films, 1998, 317, 429-431.	0.8	9
71	Measurements of VOCs with a Semiconductor Electronic Nose. Journal of the Electrochemical Society, 1998, 145, 2486-2489.	1.3	27
72	Microsystems for in situ measurement of vocs in groundwaters and soils. , 1998, , 137-150.		0

#	Article	IF	Citations
73	Measurements of VOCs in soils through a tin oxide multisensor system. Sensors and Actuators B: Chemical, 1997, 43, 193-199.	4.0	22
74	Analysis of VOCs with a tin oxide sensor array. Sensors and Actuators B: Chemical, 1997, 43, 200-205.	4.0	53
75	A Smart Sensor System for Carbon Monoxide Detection. , 1997, , 113-134.		1
76	Integrated sensor array for gas analysis in combustion atmospheres. Sensors and Actuators B: Chemical, 1996, 33, 128-133.	4.0	19
77	Long-term reliability of sensors for detection of nitrogen oxides. Sensors and Actuators B: Chemical, 1995, 26, 56-58.	4.0	22
78	The effect of additives in tin oxide on the sensitivity and selectivity to NOx and CO. Sensors and Actuators B: Chemical, 1995, 26, 19-23.	4.0	67
79	The influence of the tin-oxide deposition technique on the sensitivity to CO. Sensors and Actuators B: Chemical, 1995, 25, 507-511.	4.0	25
80	The interaction of different oxidizing agents on doped tin oxide. Sensors and Actuators B: Chemical, 1995, 25, 512-515.	4.0	23
81	Hall effect measurements to calculate the conduction control in semiconductor films of SnO2. Sensors and Actuators A: Physical, 1994, 42, 619-621.	2.0	17
82	Hall coefficient measurements for SnO2 doped sensors, as a function of temperature and atmosphere. Sensors and Actuators B: Chemical, 1993, 15, 98-104.	4.0	18
83	A potentially selective methane sensor based on the differential conductivity responses of Pd- and Pt-doped tin oxide thick layers. Sensors and Actuators B: Chemical, 1993, 16, 384-389.	4.0	20
84	NOx tin dioxide sensors activities, as a function of doped materials and temperature. Sensors and Actuators B: Chemical, 1993, 16, 354-356.	4.0	19
85	Design of polycrystalline gas sensors based on admittance spectrum measurements. Sensors and Actuators B: Chemical, 1992, 7, 609-613.	4.0	4
86	Properties of polycrystalline gas sensors based on d.c. and a.c. electrical measurements. Sensors and Actuators B: Chemical, 1992, 8, 231-235.	4.0	16
87	Use of complex impedance spectroscopy in chemical sensor characterization. Sensors and Actuators B: Chemical, 1991, 4, 359-363.	4.0	39
88	Integrated sensors for monitoring contaminant gases in atmospheres and soils. , 0, , .		5
89	Identification of typical wine aromas by means of an electronic nose. , 0, , .		0
90	Electromechanically coupled feedback loops for microsystems. application to volatile organic compounds (VOC) sensors. , 0, , .		1

#	Article	IF	CITATIONS
91	FEM simulations to estimate the polymer thickness deposited over mechanical resonators. , 0, , .		o
92	Characterization and optimization of ZnO films for SAW devices., 0,,.		0