Meng Li Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5228145/publications.pdf

Version: 2024-02-01

18	1,984	15	18
papers	citations	h-index	g-index
18	18	18	2337
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry, 2019, 21, 449-471.	9.0	821
2	Fluorescent carbon dots functionalization. Advances in Colloid and Interface Science, 2019, 270, 165-190.	14.7	181
3	Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chemistry, 2017, 19, 3611-3617.	9.0	141
4	A large-scale synthesis of photoluminescent carbon quantum dots: a self-exothermic reaction driving the formation of the nanocrystalline core at room temperature. Green Chemistry, 2016, 18, 5127-5132.	9.0	118
5	Terbium(III) Modified Fluorescent Carbon Dots for Highly Selective and Sensitive Ratiometry of Stringent. Analytical Chemistry, 2018, 90, 4003-4009.	6. 5	106
6	One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline. Methods and Applications in Fluorescence, 2017, 5, 015003.	2.3	75
7	Carbon dot-based composites for catalytic applications. Green Chemistry, 2020, 22, 4034-4054.	9.0	74
8	Cu(<scp>i</scp>)-Doped carbon quantum dots with zigzag edge structures for highly efficient catalysis of azide–alkyne cycloadditions. Green Chemistry, 2017, 19, 1494-1498.	9.0	65
9	Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(III)-modified carbon dots. Talanta, 2019, 191, 443-448.	5 . 5	64
10	Self-exothermic reaction prompted synthesis of single-layered graphene quantum dots at room temperature. Chemical Communications, 2017, 53, 4958-4961.	4.1	59
11	Dendritic CuSe with Hierarchical Side-Branches: Synthesis, Efficient Adsorption, and Enhanced Photocatalytic Activities under Daylight. ACS Sustainable Chemistry and Engineering, 2017, 5, 4154-4160.	6.7	54
12	Highly selective and sensitive detection of 2,4,6-trinitrophenol by using newly developed blue–green photoluminescent carbon nanodots. Talanta, 2016, 161, 875-880.	5 . 5	51
13	Highly selective detection of phosphate ion based on a single-layered graphene quantum dots-Al3+ strategy. Talanta, 2018, 178, 172-177.	5.5	51
14	Boron and nitrogen co-doped single-layered graphene quantum dots: a high-affinity platform for visualizing the dynamic invasion of HIV DNA into living cells through fluorescence resonance energy transfer. Journal of Materials Chemistry B, 2017, 5, 8719-8724.	5.8	48
15	Recent advances of carbon dots in imaging-guided theranostics. TrAC - Trends in Analytical Chemistry, 2021, 134, 116116.	11.4	38
16	Aptamer-modified selenium nanoparticles for dark-field microscopy imaging of nucleolin. Chemical Communications, 2017, 53, 13047-13050.	4.1	16
17	A single gold nanoprobe for colorimetric detection of silver(<scp>i</scp>) ions with dark-field microscopy. Analyst, The, 2019, 144, 2011-2016.	3.5	15
18	Metal-Mediated Gold Nanospheres Assembled for Dark-Field Microscopy Imaging Scatterometry. Talanta, 2019, 201, 280-285.	5 . 5	7