Yu-Liang Cao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/522783/yu-liang-cao-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

247	21,718 citations	76	143
papers		h-index	g-index
258	24,936 ext. citations	10.7	7.17
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
247	A Solid-Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithium-Sulfur Batteries <i>Small</i> , 2022 , e2106144	11	2
246	A Novel Dendrite-Free Lithium Metal Anode via Oxygen and Boron Codoped Honeycomb Carbon Skeleton <i>Small</i> , 2022 , e2104876	11	3
245	Template-directed synthesis of Co2P/MoSe2 in a N-doped carbon hollow structure for efficient and stable sodium/potassium ion storage. <i>Nano Energy</i> , 2022 , 93, 106897	17.1	12
244	A Novel Dendrite-Free Lithium Metal Anode via Oxygen and Boron Codoped Honeycomb Carbon Skeleton (Small 11/2022). <i>Small</i> , 2022 , 18, 2270055	11	0
243	A Novel Fe-defect Induced Pure-phase Na4Fe2.91(PO4)2P2O7 Cathode Material with High Capacity and Ultra-long Lifetime for Low-cost Sodium-ion Batteries. <i>Nano Energy</i> , 2021 , 91, 106680	17.1	10
242	Improved Initial Charging Capacity of Na-poor Na0.44MnO2 via Chemical Presodiation Strategy for Low-cost Sodium-ion Batteries. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 274-279	2.2	3
241	Ethylene Carbonate-Free Propylene Carbonate-Based Electrolytes with Excellent Electrochemical Compatibility for Li-Ion Batteries through Engineering Electrolyte Solvation Structure. <i>Advanced Energy Materials</i> , 2021 , 11, 2003905	21.8	19
240	Electrochemical Insight into the Sodium-Ion Storage Mechanism on a Hard Carbon Anode. <i>ACS Applied Materials & District Applied & District </i>	9.5	6
239	Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Li-Ion Batteries by Chemical Prelithiation of Graphite Anode. <i>Advanced Functional Materials</i> , 2021 , 31, 2101181	15.6	23
238	Design Strategies for High-Voltage Aqueous Batteries. Small Structures, 2021, 2, 2100001	8.7	19
237	Molten salt synthesis of LiMn1.2Ni0.3Cr0.1Co0.15Al0.23La0.02O4 as a positive electrode for lithium-ion batteries. <i>International Journal of Energy Research</i> , 2021 , 45, 15424-15437	4.5	1
236	-Formed Artificial Solid Electrolyte Interphase for Boosting the Cycle Stability of Si-Based Anodes for Li-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 22505-22513	9.5	6
235	A Green and Scalable Synthesis of Na Fe (PO)P O /rGO Cathode for High-Rate and Long-Life Sodium-Ion Batteries <i>Small Methods</i> , 2021 , 5, e2100372	12.8	9
234	Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries 2021 , 3, 956-97	7	17
233	An advanced low-cost cathode composed of graphene-coated Na2.4Fe1.8(SO4)3 nanograins in a 3D graphene network for ultra-stable sodium storage. <i>Journal of Energy Chemistry</i> , 2021 , 54, 564-570	12	5
232	Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: A mini review. <i>Electrochemistry Communications</i> , 2021 , 122, 106897	5.1	6
231	Monoclinic ENaVOPO4 as cathode materials for sodium-ions batteries: Experimental and DFT investigation. <i>International Journal of Energy Research</i> , 2021 , 45, 1703-1719	4.5	2

(2020-2021)

230	A controllable thermal-sensitivity separator with an organicIhorganic hybrid interlayer for high-safety lithium-ion batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 2313-2319	7.8	3
229	Enabling stable and high-rate cycling of a Ni-rich layered oxide cathode for lithium-ion batteries by modification with an artificial Li+-conducting cathode-electrolyte interphase. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11623-11631	13	5
228	The underlying mechanism for reduction stability of organic electrolytes in lithium secondary batteries. <i>Chemical Science</i> , 2021 , 12, 9037-9041	9.4	5
227	Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. <i>Green Energy and Environment</i> , 2021 ,	5.7	7
226	Tunable Electrocatalytic Behavior of Sodiated MoS Active Sites toward Efficient Sulfur Redox Reactions in Room-Temperature Na-S Batteries. <i>Advanced Materials</i> , 2021 , 33, e2100229	24	23
225	Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium storage. <i>CheM</i> , 2021 ,	16.2	19
224	Microstructure-Dependent Charge/Discharge Behaviors of Hollow Carbon Spheres and its Implication for Sodium Storage Mechanism on Hard Carbon Anodes. <i>Small</i> , 2021 , 17, e2102248	11	9
223	Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21310-21318	16.4	55
222	Metal/covalent-organic frameworks for electrochemical energy storage applications. <i>EcoMat</i> , 2021 , 3, e12133	9.4	8
221	Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves. <i>Angewandte Chemie</i> , 2021 , 133, 21480-21488	3.6	13
220	Mixed polyanion cathode materials: Toward stable and high-energy sodium-ion batteries. <i>Journal of Energy Chemistry</i> , 2021 , 60, 635-648	12	16
219	All-Climate High-Voltage Commercial Lithium-Ion Batteries Based on Propylene Carbonate Electrolytes ACS Applied Materials & amp; Interfaces, 2021,	9.5	5
218	Hard carbon anode derived from camellia seed shell with superior cycling performance for sodium-ion batteries. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 414002	3	6
217	Pseudocapacitive Trimetal Fe0.8CoMnO4 Nanoparticles@Carbon Nanofibers as High-Performance Sodium Storage Anode with Self-Supported Mechanism. <i>Advanced Functional Materials</i> , 2020 , 30, 20017	71 5 .6	10
216	Building a Thermal Shutdown Cathode for Li-Ion Batteries Using Temperature-Responsive Poly(3-Dodecylthiophene). <i>Energy Technology</i> , 2020 , 8, 2000365	3.5	11
215	Building a Cycle-Stable Fe-Si Alloy/Carbon Nanocomposite Anode for Li-Ion Batteries through a Covalent-Bonding Method. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 30503-30509	9.5	14
214	Water-Based Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium-Sulfur Batteries. <i>ACS Applied Materials & Description of the ACS Applied Ma</i>	9.5	3
213	Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries. <i>ACS Applied Materials & Discourse and Materials & Disc</i>	9.5	33

212	Efficient and Facile Electrochemical Process for the Production of High-Quality Lithium Hexafluorophosphate Electrolyte. <i>ACS Applied Materials & Distriction of High-Quality Lithium Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. <i>ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte.</i> ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. <i>ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte.</i> ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte & Distriction of High-Quality Lithium Hexafluorophosphate Electrolyte & Distriction of High-Quality Lithium Hexafluorophosphate & Distriction of High-Quality Lithium</i>	9.5	1
211	Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte. <i>Informa</i> Materilly, 2020 , 2, 984-992	23.1	54
210	Ultralow-Strain Zn-Substituted Layered Oxide Cathode with Suppressed P2D2 Transition for Stable Sodium Ion Storage. <i>Advanced Functional Materials</i> , 2020 , 30, 1910327	15.6	54
209	Suppressing Voltage Fading of Li-Rich Oxide Cathode via Building a Well-Protected and Partially-Protonated Surface by Polyacrylic Acid Binder for Cycle-Stable Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1904264	21.8	50
208	Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent. <i>Chemical Communications</i> , 2020 , 56, 6559-6562	5.8	12
207	Surface Modification of Fe S /C Anode via Ultrathin Amorphous TiO Layer for Enhanced Sodium Storage Performance. <i>Small</i> , 2020 , 16, e2000745	11	10
206	Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries. <i>Journal of Materials Science and Technology</i> , 2020 , 55, 81-88	9.1	5
205	Facile and reversible digestion and regeneration of zirconium-based metal-organic frameworks. <i>Communications Chemistry</i> , 2020 , 3,	6.3	11
204	A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. <i>Electrochimica Acta</i> , 2020 , 332, 135533	6.7	31
203	Self-Healing Double-Cross-Linked Supramolecular Binders of a Polyacrylamide-Grafted Soy Protein Isolate for Liß Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 12799-12808	8.3	18
202	Novel Sodium Poly(tartaric acid)Borate-Based Single-Ion Conducting Polymer Electrolyte for Sodium Metal Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 10053-10060	6.1	10
201	A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. <i>Journal of Energy Chemistry</i> , 2020 , 44, 33-40	12	33
200	Highly Selective and Pollution-Free Electrochemical Extraction of Lithium by a Polyaniline/Li Mn O Cell. <i>ChemSusChem</i> , 2019 , 12, 1361-1367	8.3	27
199	Polyaniline hollow nanofibers prepared by controllable sacrifice-template route as high-performance cathode materials for sodium-ion batteries. <i>Electrochimica Acta</i> , 2019 , 301, 352-358	6.7	25
198	Schwefel-basierte Elektroden mit Mehrelektronenreaktionen fl Raumtemperatur-Natriumionenspeicherung. <i>Angewandte Chemie</i> , 2019 , 131, 18490-18504	3.6	8
197	Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. <i>ACS Energy Letters</i> , 2019 , 4, 1717-1724	20.1	78
196	Sulfur-Based Electrodes that Function via Multielectron Reactions for Room-Temperature Sodium-Ion Storage. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18324-18337	16.4	46
195	In Situ Formation of CoS Nanoclusters in Sulfur-Doped Carbon Foam as a Sustainable and High-Rate Sodium-Ion Anode. <i>ACS Applied Materials & Discrete Sodium-Ion Anode</i> . <i>ACS Applied Materials & Discrete Sodium-Ion Anode</i> .	9.5	33

(2019-2019)

In situ N-doped carbon modified (Co0.5Ni0.5)9S8 solid-solution hollow spheres as high-capacity anodes for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8268-8276	13	57
Electrolytes for Dual-Carbon Batteries. <i>ChemElectroChem</i> , 2019 , 6, 2615-2629	4.3	36
High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. <i>Science China Chemistry</i> , 2019 , 62, 118-125	7.9	8
Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. <i>Energy Storage Materials</i> , 2019 , 22, 330-336	19.4	56
Recent Progress in Rechargeable Sodium-Ion Batteries: toward High-Power Applications. <i>Small</i> , 2019 , 15, e1805427	11	149
A temperature-sensitive poly(3-octylpyrrole)/carbon composite as a conductive matrix of cathodes for building safer Li-ion batteries. <i>Energy Storage Materials</i> , 2019 , 17, 275-283	19.4	23
An Al-doped high voltage cathode of Na4Co3(PO4)2P2O7 enabling highly stable 4 V full sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18940-18949	13	21
Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. <i>Nano Energy</i> , 2019 , 64, 103903	17.1	58
Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019 , 7, 19709-19718	13	59
Extended AdsorptionInsertionIModel: A New Insight into the Sodium Storage Mechanism of Hard Carbons. <i>Advanced Energy Materials</i> , 2019 , 9, 1901351	21.8	165
High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double NaV(PO) Electrodes. <i>ACS Applied Materials & Double Navier State State</i>	9.5	21
Zero-strain NaFe(PO) as a novel cathode material for sodium-ion batteries. <i>Chemical Communications</i> , 2019 , 55, 9043-9046	5.8	14
Developments and Perspectives on Emerging High-Energy-Density Sodium-Metal Batteries. <i>CheM</i> , 2019 , 5, 2547-2570	16.2	67
Sodium Storage Mechanism: Extended AdsorptionInsertionIModel: A New Insight into the Sodium Storage Mechanism of Hard Carbons (Adv. Energy Mater. 32/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970125	21.8	3
Highly Electrochemically-Reversible Mesoporous Na FePO F/C as Cathode Material for High-Performance Sodium-Ion Batteries. <i>Small</i> , 2019 , 15, e1903723	11	16
A Membrane-Free and Energy-Efficient Three-Step Chlor-Alkali Electrolysis with Higher-Purity NaOH Production. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 45126-45132	9.5	8
Improved Sodium Storage Performance of Na0.44MnO2 Cathode at a High Temperature by Al2O3 Coating. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2019 , 35, 1357-1364	3.8	10
Bridging the academic and industrial metrics for next-generation practical batteries. <i>Nature Nanotechnology</i> , 2019 , 14, 200-207	28.7	255
	Electrolytes for Dual-Carbon Batteries. <i>Journal of Materials Chemistry A</i> , 2019, 7, 8268-8276 Electrolytes for Dual-Carbon Batteries. <i>ChemElectroChem</i> , 2019, 6, 2615-2629 High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. <i>Science China Chemistry</i> , 2019, 62, 118-125 Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. <i>Energy Storage Materials</i> , 2019, 22, 330-336 Recent Progress in Rechargeable Sodium-ion Batteries: toward High-Power Applications. <i>Small</i> , 2019, 15, e1805427 A temperature-sensitive poly(3-octylpyrrole)/carbon composite as a conductive matrix of cathodes for building safer Li-ion batteries. <i>Energy Storage Materials</i> , 2019, 17, 275-283 An Al-doped high voltage cathode of Na4Co3(PO4)2P2O7 enabling highly stable 4 V full sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019, 7, 18940-18949 Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. <i>Nano Energy</i> , 2019, 64, 103903 Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019, 7, 19709-19718 Extended &dsorptionIbsertionIModel: A New Insight into the Sodium Storage Mechanism of Hard Carbons. <i>Advanced Energy Materials</i> , 2019, 9, 1901351 High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double NaV(PO) Electrodes. <i>ACS Applied Materials & Developments</i> and Perspectives on Emerging High-Energy-Density Sodium-Metal Batteries. <i>Chem</i> , 2019, 5, 2547-2570 Sodium Storage Mechanism: Extended &dsorptionIbsertionIModel: A New Insight into the Sodium Storage Mechanism of Hard Carbons (Adv. Energy Mater. 32/2019). <i>Advanced Energy Materials</i> , 2019, 9, 1970125 Highly Electrochemically-Reversible Mesoporous Na FePO F/C as Cathode Material for High-Performance Sodium-ion Batteries. <i>Small</i> , 2019, 11, 45126-45132 Improved Sodium Storage Performance of	Electrolytes for Dual-Carbon Batteries. ChemElectroChem, 2019, 6, 2615-2629 High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. Science China Chemistry, 2019, 62, 118-125 79 Na4Fa3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. Energy Storage Materials, 2019, 22, 330-336 Recent Progress in Rechargeable Sodium-Ion Batteries: toward High-Power Applications. Small, 2019, 15, e1805427 A temperature-sensitive poly(3-octylpyrrole)(carbon composite as a conductive matrix of cathodes for building safer Li-ion batteries. Energy Storage Materials, 2019, 17, 275-283 An Al-doped high voltage cathode of Na4Co3(PO4)2P2O7 enabling highly stable 4 V full sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18940-18949 Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy, 2019, 64, 103903 Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19709-19718 Extended BadsorptionInsertionIModel: A New Insight into the Sodium Storage Mechanism of Hard Carbons. Advanced Energy Materials, 2019, 9, 1901351 High-Safety Symmetric Sodium-ion Batteries Based on Nonflammable Phosphate Electrolyte and Double NaV(PO) Electrodes. ACS Applied Materials Ramp; Interfaces, 2019, 11, 27833-27838 Zero-strain NaFe(PO) as a novel cathode material for sodium-ion batteries. Chemical Communications, 2019, 55, 9043-9046 Developments and Perspectives on Emerging High-Energy-Density Sodium-Metal Batteries. Chem, 2019, 5, 2547-2570 Sodium Storage Mechanism: Extended BadsorptionInsertionIModel: A New Insight into the Sodium-Storage Mechanism of Hard Carbons (Adv. Energy Mater. 32/2019). Advanced Energy Mater. 32/2019, 19, 190125 Highly Electrochemically-Reversible Mesoporous Na FePO F/C as Cathode Material for High-Performance Sodium-Ion Batteries. Small, 2019, 15, e1903723

176	Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. <i>Nanoscale</i> , 2019 , 11, 21999-22005	7.7	20
175	Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography. <i>Materials Today</i> , 2019 , 27, 21-32	21.8	32
174	3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. <i>Nano Energy</i> , 2019 , 56, 160-168	17.1	75
173	TiO-Coated Interlayer-Expanded MoSe/Phosphorus-Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage. <i>Advanced Science</i> , 2019 , 6, 1801222	13.6	61
172	Stable Li Metal Anode with IbnBolvent-CoordinatedINonflammable Electrolyte for Safe Li Metal Batteries. <i>ACS Energy Letters</i> , 2019 , 4, 483-488	20.1	95
171	High-Capacity Hard Carbon Pyrolyzed from Subbituminous Coal as Anode for Sodium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 729-735	6.1	15
170	High-Performance Flexible Freestanding Anode with Hierarchical 3D Carbon-Networks/Fe S /Graphene for Applicable Sodium-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1806664	24	173
169	Sodium Ion Storage: TiO2-Coated Interlayer-Expanded MoSe2/Phosphorus-Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage (Adv. Sci. 1/2019). <i>Advanced Science</i> , 2019 , 6, 1970005	13.6	1
168	Well-defined Na2Zn3[Fe(CN)6]2 nanocrystals as a low-cost and cycle-stable cathode material for Na-ion batteries. <i>Electrochemistry Communications</i> , 2019 , 98, 78-81	5.1	14
167	An all-vanadium aqueous lithium ion battery with high energy density and long lifespan. <i>Energy Storage Materials</i> , 2019 , 18, 92-99	19.4	28
166	Novel 2D Layered Molybdenum Ditelluride Encapsulated in Few-Layer Graphene as High-Performance Anode for Lithium-Ion Batteries. <i>Small</i> , 2018 , 14, e1703680	11	37
165	A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-Ion Batteries. <i>CheM</i> , 2018 , 4, 1167-1180	16.2	92
164	Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702619	21.8	299
163	A high voltage cathode of Na2+2xFe2½(SO4)3 intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4354-4364	13	30
162	Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries. <i>Small</i> , 2018 , 14, 1703116	11	118
161	Low-Defect and Low-Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. <i>Advanced Energy Materials</i> , 2018 , 8, 1703238	21.8	262
160	Symmetric Sodium-Ion Capacitor Based on NaMnO Nanorods for Low-Cost and High-Performance Energy Storage. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 11689-11698	9.5	49
159	Transition metal oxides based on conversion reaction for sodium-ion battery anodes. <i>Materials Today Chemistry</i> , 2018 , 9, 114-132	6.2	27

158	Recent Advances in Sodium-Ion Battery Materials. <i>Electrochemical Energy Reviews</i> , 2018 , 1, 294-323	29.3	154
157	Sodium-Ion Batteries: Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries (Adv. Energy Mater. 17/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870079	21.8	21
156	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. <i>ACS Applied Materials & Description</i> (2018), 10, 593-	-60 1	78
155	Ultrathin phyllosilicate nanosheets as anode materials with superior rate performance for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1397-1402	13	16
154	Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23396-23407	13	28
153	A Bifunctional Fluorophosphate Electrolyte for Safer Sodium-Ion Batteries. <i>IScience</i> , 2018 , 10, 114-122	6.1	30
152	Template synthesis of mesoporous Li2MnSiO4@C composite with improved lithium storage properties. <i>Electrochimica Acta</i> , 2018 , 291, 124-131	6.7	10
151	Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 39651-39660	9.5	22
150	Magnesio-mechanochemical reduced SiO for high-performance lithium ion batteries. <i>Journal of Power Sources</i> , 2018 , 407, 112-122	8.9	25
149	A Nonflammable Na+-Based Dual-Carbon Battery with Low-Cost, High Voltage, and Long Cycle Life. <i>Advanced Energy Materials</i> , 2018 , 8, 1802176	21.8	72
148	High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries. <i>ACS Applied Materials & District Materials & D</i>	9.5	35
147	Novel Alkaline Zn/NaMnO Dual-Ion Battery with a High Capacity and Long Cycle Lifespan. <i>ACS Applied Materials & Discrete Section</i> , 10, 34108-34115	9.5	36
146	Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method. <i>Small</i> , 2018 , 14, e1802694	11	74
145	A solar rechargeable battery based on the sodium ion storage mechanism with Fe2(MoO4)3 microspheres as anode materials. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10627-10631	13	14
144	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. <i>Nature Energy</i> , 2018 , 3, 674-681	62.3	357
143	Electrochromic Metal Oxides: Recent Progress and Prospect. Advanced Electronic Materials, 2018, 4, 180	0 6 .1485	114
142	AlF-Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes. <i>Chemical Communications</i> , 2018 , 54, 8347-8350	5.8	20
141	Phosphate Framework Electrode Materials for Sodium Ion Batteries. <i>Advanced Science</i> , 2017 , 4, 160039	2 13.6	200

140	High Rate, Long Lifespan LiV O Nanorods as a Cathode Material for Lithium-Ion Batteries. <i>Small</i> , 2017 , 13, 1603148	11	42
139	Graphene-Scaffolded NaV(PO) Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries. <i>ACS Applied Materials & District Research</i> , 9, 7177-7184	9.5	123
138	Manipulating AdsorptionInsertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage. <i>Advanced Energy Materials</i> , 2017 , 7, 1700403	21.8	486
137	Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries. <i>Ceramics International</i> , 2017 , 43, 9630-9635	5.1	28
136	Recent Developments in Cathode Materials for Na Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 211-241	3.8	38
135	Fe2O3 amorphous nanoparticles/graphene composite as high-performance anode materials for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2017 , 711, 15-21	5.7	27
134	Coaxial Three-Layered Carbon/Sulfur/Polymer Nanofibers with High Sulfur Content and High Utilization for Lithium-Sulfur Batteries. <i>ACS Applied Materials & District Materials</i> (2017), 9, 11626-11633	9.5	22
133	Yolk-Shell TiO@C Nanocomposite as High-Performance Anode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & Discourse as ACS Applied Materials & Discourse &</i>	9.5	52
132	A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core@hell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23238-23242	13	48
131	Novel Ceramic-Grafted Separator with Highly Thermal Stability for Safe Lithium-Ion Batteries. <i>ACS Applied Materials & District Materia</i>	9.5	72
130	An All-Phosphate and Zero-Strain Sodium-Ion Battery Based on NaV(PO) Cathode, NaTi(PO) Anode, and Trimethyl Phosphate Electrolyte with Intrinsic Safety and Long Lifespan. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 43733-43738	9.5	31
129	Surface-engineering enhanced sodium storage performance of Na3V2(PO4)3 cathode via in-situ self-decorated conducting polymer route. <i>Science China Chemistry</i> , 2017 , 60, 1546-1553	7.9	18
128	A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. <i>Green Energy and Environment</i> , 2017 , 2, 310-315	5.7	42
127	Discussion on the mechanism of sodium storage of different structural types of carbon material. <i>Scientia Sinica Chimica</i> , 2017 , 47, 573-578	1.6	3
126	SnO2-Reduced Graphene Oxide Nanocomposites via Microwave Route as Anode for Sodium-Ion Battery. <i>Jom</i> , 2016 , 68, 2607-2612	2.1	8
125	Low Defect FeFe(CN)6 Framework as Stable Host Material for High Performance Li-Ion Batteries. <i>ACS Applied Materials & Description of Materials & Description (Materials & Description of Materials & Description </i>	9.5	82
124	Hard Carbon Fibers Pyrolyzed from Wool as High-Performance Anode for Sodium-Ion Batteries. <i>Jom</i> , 2016 , 68, 2579-2584	2.1	19
123	A solar storable fuel cell with efficient photo-degradation of organic waste for direct electricity generation. <i>Energy Storage Materials</i> , 2016 , 5, 165-170	19.4	9

(2016-2016)

122	Method as a Highly Stable Anode Material for Lithium-Ion Batteries. <i>ACS Applied Materials & Amp;</i> Interfaces, 2016 , 8, 31611-31616	9.5	72
121	Effect of Li1/3Mn2/3-Substitution on Electrochemical Performance of P2-Na0.74CoO2 Cathode for Sodium-ion Batteries. <i>Electrochimica Acta</i> , 2016 , 222, 862-866	6.7	6
120	Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 16684-9	9.5	107
119	Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11351-11356	13	58
118	Building thermally stable Li-ion batteries using a temperature-responsive cathode. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11239-11246	13	44
117	Graphene-Modified TiO2 Microspheres Synthesized by a Facile Spray-Drying Route for Enhanced Sodium-Ion Storage. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 545-552	3.1	36
116	Graphene-Wrapped Na2C12H6O4 Nanoflowers as High Performance Anodes for Sodium-Ion Batteries. <i>Small</i> , 2016 , 12, 583-7	11	71
115	Highly Crystallized NattoFe(CN) with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & Defects as Superior Cathode Materials & Defects & De</i>	9.5	220
114	TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. <i>Journal of Membrane Science</i> , 2016 , 504, 97-103	9.6	113
113	Nanospherical-Like Manganese Monoxide/Reduced Graphene Oxide Composite Synthesized by Electron Beam Radiation as Anode Material for High-Performance Lithium-Ion Batteries. <i>Electrochimica Acta</i> , 2016 , 196, 431-439	6.7	29
112	Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. <i>ACS Applied Materials & Applied & Appli</i>	9.5	59
111	Investigation of the Effect of Fluoroethylene Carbonate Additive on Electrochemical Performance of Sb-Based Anode for Sodium-Ion Batteries. <i>Electrochimica Acta</i> , 2016 , 190, 402-408	6.7	54
110	Poly(3-butylthiophene)-based positive-temperature-coefficient electrodes for safer lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 187, 173-178	6.7	20
109	Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. <i>Nano Energy</i> , 2016 , 19, 279-288	17.1	289
108	Routes to High Energy Cathodes of Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1501727	21.8	331
107	3D Graphene Decorated NaTi2(PO4)3 Microspheres as a Superior High-Rate and Ultracycle-Stable Anode Material for Sodium Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502197	21.8	177
106	Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage. <i>ACS Applied Materials & Emp; Interfaces</i> , 2016 , 8, 18867-77	9.5	35
105	Perylenediimide dyes as a cheap and sustainable cathode for lithium ion batteries. <i>Materials Letters</i> , 2016 , 175, 191-194	3.3	24

104	A Safer Sodium-Ion Battery Based on Nonflammable Organic Phosphate Electrolyte. <i>Advanced Science</i> , 2016 , 3, 1600066	13.6	84
103	Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. <i>Nano Energy</i> , 2015 , 13, 117-123	17.1	196
102	Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7406-7412	13	115
101	An All-solid-state and All-organic Sodium-ion Battery based on Redox-active Polymers and Plastic Crystal Electrolyte. <i>Electrochimica Acta</i> , 2015 , 178, 55-59	6.7	37
100	High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries. <i>ACS Applied Materials & Displacement Method For Sodium Ion Batteries</i> . <i>ACS Applied Materials & Displacement Method For Sodium Ion Batteries</i> .	8 4 ⁵	108
99	Improved rate capability of the conducting functionalized FTO-coated Li-[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17113-17119	13	32
98	Na3V2(PO4)3/C nanocomposite synthesized via pre-reduction process as high-performance cathode material for sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2015 , 646, 170-174	5.7	39
97	Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 293, 784-789	8.9	79
96	Vacancy-Free Prussian Blue Nanocrystals with High Capacity and Superior Cyclability for Aqueous Sodium-Ion Batteries. <i>ChemNanoMat</i> , 2015 , 1, 188-193	3.5	115
95	A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 24119-26	9.5	91
94	A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries. <i>ACS Applied Materials & Discrete Materials </i>	9.5	82
93	Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. <i>Advanced Materials</i> , 2015 , 27, 5895-900	24	372
92	Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5708-5713	13	92
91	Enabling a high capacity and long cycle life for nano-Si anodes by building a stable solid interface with a Li+-conducting polymer. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9938-9944	13	18
90	Bis(2,2,2-Trifluoroethyl) Ethylphosphonate as Novel High-efficient Flame Retardant Additive for Safer Lithium-ion Battery. <i>Electrochimica Acta</i> , 2015 , 165, 67-71	6.7	29
89	Safer lithium ion batteries based on nonflammable electrolyte. <i>Journal of Power Sources</i> , 2015 , 279, 6-1	2 8.9	62
88	Nanophase ZnV2O4 as stable and high capacity Li insertion electrode for Li-ion battery. <i>Current Applied Physics</i> , 2015 , 15, 435-440	2.6	16
87	Bis(2,2,2-trifluoroethyl) methylphosphonate: An Novel Flame-retardant Additive for Safe Lithium-ion Battery. <i>Electrochimica Acta</i> , 2014 , 129, 300-304	6.7	38

86	P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery. <i>Electrochimica Acta</i> , 2014 , 116, 300-305	6.7	236
85	SbII nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 323-328	35.4	536
84	A tin(II) sulfideBarbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16424-16428	13	118
83	Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4)3 intercalation chemistry. <i>ChemSusChem</i> , 2014 , 7, 407-11	8.3	182
82	Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. <i>Nano Letters</i> , 2014 , 14, 3539-43	11.5	210
81	Organic Alloy Electrolytes for Thermostable Solid-State Dye-Sensitized Solar Cells. <i>Electrochimica Acta</i> , 2014 , 147, 535-539	6.7	2
80	Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 3508-12	9.5	72
79	A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries. <i>Advanced Materials</i> , 2014 , 26, 6301-6	24	217
78	Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. <i>Nano Letters</i> , 2014 , 14, 1865-9	11.5	353
77	Enhanced electrochemical performance of Mg-doped LiCoO2 synthesized by a polymer-pyrolysis method. <i>Ceramics International</i> , 2014 , 40, 11245-11249	5.1	31
76	Electrochemical properties of stacked-nanoflake Li4Ti5O12 spinel synthesized by a polymer-pyrolysis method. <i>Current Applied Physics</i> , 2014 , 14, 586-589	2.6	2
75	Enhanced Cycling Stability of Sulfur Cathode Surface-Modified by Poly(N-methylpyrrole). <i>Electrochimica Acta</i> , 2014 , 135, 108-113	6.7	13
74	Cathode and Anode Materials for Na-Ion Battery. <i>Green Energy and Technology</i> , 2014 , 395-424	0.6	
73	Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11397	13	194
72	A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3Na2NiFe(CN)6 intercalation chemistry. <i>Electrochemistry Communications</i> , 2013 , 31, 145-14	8 ^{5.1}	238
71	Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. Journal of Materials Chemistry A, 2013 , 1, 10130	13	236
70	A redox-active polythiophene-modified separator for safety control of lithium-ion batteries. Journal of Polymer Science, Part B: Polymer Physics, 2013 , 51, 1487-1493	2.6	10
69	Facile preparation and electrochemical characterization of poly (4-methoxytriphenylamine)-modified separator as a self-activated potential switch for lithium ion batteries. <i>Electrochimica Acta</i> , 2013 , 108, 191-195	6.7	13

68	A low cost, all-organic Na-ion battery based on polymeric cathode and anode. <i>Scientific Reports</i> , 2013 , 3, 2671	4.9	197
67	Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. <i>Chemical Communications</i> , 2013 , 49, 11370-2	5.8	76
66	Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2013 , 51, 114-118	2.6	62
65	Fabrication of belt-like VO2(M)@C core-shell structured composite to improve the electrochemical properties of VO2(M). <i>Current Applied Physics</i> , 2013 , 13, 47-52	2.6	23
64	Facile hydrothermal synthesis of vanadium oxides nanobelts by ethanol reduction of peroxovanadium complexes. <i>Ceramics International</i> , 2013 , 39, 129-141	5.1	66
63	Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4988	13	98
62	High capacity and rate capability of amorphous phosphorus for sodium ion batteries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 4633-6	16.4	535
61	Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3895	13	215
60	SiCBbII nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. <i>Electrochimica Acta</i> , 2013 , 87, 41-45	6.7	84
59	Synthesis of Monoclinic Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Nanoparticles by a Layered-Template Route for High-Performance Li-Ion Batteries. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 2887-	- 2 892	18
58	An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 227, 106-110	8.9	59
57	A SnBnSII nanocomposite as anode host materials for Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7181	13	126
56	Molecular structures of polymer/sulfur composites for lithiumBulfur batteries with long cycle life. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9517	13	52
55	A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. <i>ChemSusChem</i> , 2013 , 6, 802-6	8.3	91
54	High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. <i>Angewandte Chemie</i> , 2013 , 125, 4731-4734	3.6	245
53	A Li+-conductive microporous carbonBulfur composite for Li-S batteries. <i>Electrochimica Acta</i> , 2013 , 87, 497-502	6.7	84
52	Improved Electrochemical Properties of Al3+-doped 0.5Li2MnO3-0.5LiCo1/3Ni1/3Mn1/3O2 Cathode for Lithium Ion Batteries. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2013 , 28, 1261-120	6 ¹ 4	7
51	A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. <i>Advanced Materials</i> , 2012 , 24, 1176-81	24	881

(2012-2012)

50	In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage. <i>Advanced Energy Materials</i> , 2012 , 2, 95-102	21.8	216
49	In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage (Adv. Energy Mater. 1/2012). <i>Advanced Energy Materials</i> , 2012 , 2, 94-94	21.8	5
48	Pb-sandwiched nanoparticles as anode material for lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 291-295	2.6	18
47	Sodium ion insertion in hollow carbon nanowires for battery applications. <i>Nano Letters</i> , 2012 , 12, 3783-	7 _{11.5}	1322
46	Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. <i>Chemical Communications</i> , 2012 , 48, 8931-3	5.8	174
45	Fe(CN)6½-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries. <i>RSC Advances</i> , 2012 , 2, 5495	3.7	56
44	An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries. <i>Electrochemistry Communications</i> , 2012 , 21, 36-38	5.1	94
43	n-Type redox behaviors of polybithiophene and its implications for anodic Li and Na storage materials. <i>Electrochimica Acta</i> , 2012 , 78, 27-31	6.7	34
42	Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17768		77
41	Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes. <i>Nano Letters</i> , 2012 , 12, 4124-30	11.5	146
40	Controlled synthesis and electrochemical properties of vanadium oxides with different nanostructures. <i>Bulletin of Materials Science</i> , 2012 , 35, 369-376	1.7	22
39	High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. <i>Chemical Communications</i> , 2012 , 48, 3321-3	5.8	538
38	High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. <i>Chemical Communications</i> , 2012 , 48, 7070-2	5.8	560
37	Low temperature hydrothermal synthesis and electrochemical performances of LiFePO4 microspheres as a cathode material for lithium-ion batteries. <i>Science Bulletin</i> , 2012 , 57, 4164-4169		4
36	Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. <i>RSC Advances</i> , 2012 , 2, 3423	3.7	144
35	An electrolyte additive for thermal shutdown protection of Li-ion batteries. <i>Electrochemistry Communications</i> , 2012 , 25, 98-100	5.1	27
34	Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries. ACS Applied Materials & amp; Interfaces, 2012, 4, 3753-8	9.5	87
33	Nanosized Na4Fe(CN)6/C Composite as a Low-Cost and High-Rate Cathode Material for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2012 , 2, 410-414	21.8	228

32	Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 7660-5	3.6	324
31	Temperature-sensitive cathode materials for safer lithium-ion batteries. <i>Energy and Environmental Science</i> , 2011 , 4, 2845	35.4	55
30	Optimization of mesoporous carbon structures for lithium ulfur battery applications. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16603		382
29	Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. <i>Advanced Materials</i> , 2011 , 23, 3155-60	24	581
28	Improvement of the electrochemical properties of V3O7IH2O nanobelts for Li battery application through synthesis of V3O7@C core-shell nanostructured composites. <i>Current Applied Physics</i> , 2011 , 11, 1159-1163	2.6	49
27	Antimony-Coated SiC Nanoparticles as Stable and High-Capacity Anode Materials for Li-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15196-15201	3.8	28
26	Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7266		55
25	Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3477-3482	3.8	192
24	Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. <i>Biomaterials</i> , 2010 , 31, 5169-81	15.6	149
23	TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells. <i>Advanced Materials</i> , 2009 , 21, 3663-3667	24	512
22	Electrochemical performances of Al-based composites as anode materials for Li-ion batteries. <i>Electrochimica Acta</i> , 2009 , 54, 4118-4122	6.7	37
21	An efficient and nonflammable organic phosphate electrolyte for dye-sensitized solar cells. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 1939-1942	2.6	2
20	Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface. <i>Biomaterials</i> , 2009 , 30, 4143-51	15.6	143
19	Anodically electrodeposited iridium oxide films microelectrodes for neural microstimulation and recording. <i>Sensors and Actuators B: Chemical</i> , 2009 , 137, 334-339	8.5	66
18	Preparation and electrochemical performance of Sntot composite as anode material for Li-ion batteries. <i>Journal of Power Sources</i> , 2009 , 189, 730-732	8.9	52
17	Electrochemical properties of nano-crystalline LiNi0.5Mn1.5O4 synthesized by polymer-pyrolysis method. <i>Journal of Solid State Electrochemistry</i> , 2008 , 12, 687-691	2.6	25
16	Activated iridium oxide films fabricated by asymmetric pulses for electrical neural microstimulation and recording. <i>Electrochemistry Communications</i> , 2008 , 10, 778-782	5.1	48
15	Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method. <i>Electrochimica Acta</i> , 2008 , 54, 545-550	6.7	140

LIST OF PUBLICATIONS

14	Synthesis and electrochemical properties of submicron LiNi0.8Co0.2O2 by a polymer-pyrolysis method. <i>Electrochimica Acta</i> , 2008 , 53, 3007-3012	6.7	31
13	Enhanced electrochemical performance of submicron LiCoO2 synthesized by polymer pyrolysis method. <i>Journal of Solid State Electrochemistry</i> , 2007 , 12, 149-153	2.6	14
12	Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. <i>Journal of Solid State Electrochemistry</i> , 2006 , 10, 283-	287	25
11	Structural and electrochemical characterization of nanocrystalline LI[Li0.12Ni0.32Mn(0.56)]O2 synthesized by a polymer-pyrolysis route. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 1148-54	3.4	48
10	Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. <i>Electrochimica Acta</i> , 2004 , 49, 4189-4196	6.7	108
9	Surface-Modified Graphite as an Improved Intercalating Anode for Lithium-Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, A30		77
8	Designing Advanced Electrolytes for Lithium Secondary Batteries Based on the Coordination Number Rule. <i>ACS Energy Letters</i> ,4282-4290	20.1	16
7	Amorphous NaVOPO 4 as a High-Rate and Ultrastable Cathode Material for Sodium-Ion Batteries. <i>CCS Chemistry</i> ,2428-2436	7.2	16
6	Emerging Intercalation Cathode Materials for Multivalent Metal-Ion Batteries: Status and Challenges. <i>Small Structures</i> ,2100082	8.7	14
5	Toward wide-temperature electrolyte for lithiumIbn batteries20210006		2
4	Effect of Eliminating Water in Prussian Blue Cathode for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> ,2111727	15.6	7
3	An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an Adsorption-Intercalation/Filling[Hybrid Mechanism. <i>Advanced Energy Materials</i> ,2200886	21.8	15
2	A Facile and Efficient Chemical Prelithiation of Graphite for Full Capacity Utilization of Li-Ion Batteries. <i>Energy Technology</i> ,2200269	3.5	
1	Understanding of the sodium storage mechanism in hard carbon anodes		12