Yu-Liang Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/522783/publications.pdf

Version: 2024-02-01

252 28,759 86 161
papers citations h-index g-index

258 258 258 17624
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Letters, 2012, 12, 3783-3787.	4.5	1,552
2	A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithiumâ€Sulfur Batteries with Long Cycle Life. Advanced Materials, 2012, 24, 1176-1181.	11.1	959
3	Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for Highâ€Efficiency Sodium Ion Storage. Advanced Energy Materials, 2017, 7, 1700403.	10.2	662
4	Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life. Advanced Materials, 2011, 23, 3155-3160.	11.1	638
5	High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chemical Communications, 2012, 48, 7070.	2.2	622
6	Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy and Environmental Science, 2014, 7, 323-328.	15.6	594
7	High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 4633-4636.	7. 2	588
8	High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chemical Communications, 2012, 48, 3321.	2.2	566
9	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3, 674-681.	19.8	557
10	TiO ₂ â€Coated Multilayered SnO ₂ Hollow Microspheres for Dyeâ€Sensitized Solar Cells. Advanced Materials, 2009, 21, 3663-3667.	11.1	541
11	Prussian Blue Cathode Materials for Sodiumâ€lon Batteries and Other Ion Batteries. Advanced Energy Materials, 2018, 8, 1702619.	10.2	460
12	Hierarchical Carbon Framework Wrapped Na ₃ V ₂ (PO ₄) ₃ as a Superior Highâ€Rate and Extended Lifespan Cathode for Sodiumâ€Ion Batteries. Advanced Materials, 2015, 27, 5895-5900.	11.1	448
13	Bridging the academic and industrial metrics for next-generation practical batteries. Nature Nanotechnology, 2019, 14, 200-207.	15.6	420
14	Optimization of mesoporous carbon structures for lithiumâ€"sulfur battery applications. Journal of Materials Chemistry, 2011, 21, 16603.	6.7	417
15	Lowâ€Defect and Lowâ€Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. Advanced Energy Materials, 2018, 8, 1703238.	10.2	414
16	Routes to High Energy Cathodes of Sodium″on Batteries. Advanced Energy Materials, 2016, 6, 1501727.	10.2	408
17	Synergistic Na-Storage Reactions in Sn ₄ P ₃ as a High-Capacity, Cycle-stable Anode of Na-Ion Batteries. Nano Letters, 2014, 14, 1865-1869.	4.5	379
18	Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Physical Chemistry Chemical Physics, 2011, 13, 7660.	1.3	347

#	Article	IF	CITATIONS
19	Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy, 2016, 19, 279-288.	8.2	341
20	Highly Crystallized Na ₂ CoFe(CN) ₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5393-5399.	4.0	334
21	Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves. Angewandte Chemie - International Edition, 2021, 60, 21310-21318.	7.2	318
22	Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10130.	5.2	295
23	A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochemistry Communications, 2013, 31, 145-148.	2.3	289
24	P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery. Electrochimica Acta, 2014, 116, 300-305.	2.6	285
25	Extended "Adsorption–Insertion―Model: A New Insight into the Sodium Storage Mechanism of Hard Carbons. Advanced Energy Materials, 2019, 9, 1901351.	10.2	284
26	Phosphate Framework Electrode Materials for Sodium Ion Batteries. Advanced Science, 2017, 4, 1600392.	5.6	275
27	Nanosized Na ₄ Fe(CN) ₆ /C Composite as a Lowâ€Cost and Highâ€Rate Cathode Material for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2012, 2, 410-414.	10.2	257
28	Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy, 2015, 13, 117-123.	8.2	256
29	Recent Progress in Rechargeable Sodium″on Batteries: toward Highâ€Power Applications. Small, 2019, 15, e1805427.	5.2	254
30	A Honeycombâ€Layered Na ₃ Ni ₂ SbO ₆ : A Highâ€Rate and Cycleâ€Stable Cathode for Sodiumâ€Ion Batteries. Advanced Materials, 2014, 26, 6301-6306.	11.1	252
31	3D Graphene Decorated NaTi ₂ (PO ₄) ₃ Microspheres as a Superior Highâ€Rate and Ultracycleâ€6table Anode Material for Sodium Ion Batteries. Advanced Energy Materials, 2016, 6, 1502197.	10.2	251
32	Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3895.	5. 2	244
33	Mesoporous Amorphous FePO ₄ Nanospheres as High-Performance Cathode Material for Sodium-Ion Batteries. Nano Letters, 2014, 14, 3539-3543.	4.5	239
34	A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode. Scientific Reports, 2013, 3, 2671.	1.6	235
35	In Situ Generation of Fewâ€Layer Graphene Coatings on SnO ₂ â€SiC Coreâ€Shell Nanoparticles for Highâ€Performance Lithiumâ€ion Storage. Advanced Energy Materials, 2012, 2, 95-102.	10.2	233
36	Highâ€Performance Flexible Freestanding Anode with Hierarchical 3D Carbonâ€Networks/Fe ₇ S ₈ /Graphene for Applicable Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1806664.	11.1	233

3

#	Article	IF	CITATIONS
37	Recent Advances in Sodium-Ion Battery Materials. Electrochemical Energy Reviews, 2018, 1, 294-323.	13.1	224
38	Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. Journal of Materials Chemistry A, 2013, 1, 11397.	5.2	219
39	Energetic Aqueous Rechargeable Sodium″on Battery Based on Na ₂ CuFe(CN) ₆ –NaTi ₂ (PO ₄) ₃ Intercalation Chemistry. ChemSusChem, 2014, 7, 407-411.	3.6	219
40	Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO ₄ Microspheres for High-Performance Lithium-Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 3477-3482.	1.5	208
41	Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chemical Communications, 2012, 48, 8931.	2.2	197
42	Electrochromic Metal Oxides: Recent Progress and Prospect. Advanced Electronic Materials, 2018, 4, 1800185.	2.6	195
43	Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method. Electrochimica Acta, 2008, 54, 545-550.	2.6	171
44	Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. Biomaterials, 2010, 31, 5169-5181.	5.7	171
45	Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode–neural tissue interface. Biomaterials, 2009, 30, 4143-4151.	5.7	170
46	TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. Journal of Membrane Science, 2016, 504, 97-103.	4.1	161
47	Conductive Rigid Skeleton Supported Silicon as High-Performance Li-lon Battery Anodes. Nano Letters, 2012, 12, 4124-4130.	4.5	160
48	Vacancyâ€Free Prussian Blue Nanocrystals with High Capacity and Superior Cyclability for Aqueous Sodiumâ€Ion Batteries. ChemNanoMat, 2015, 1, 188-193.	1.5	160
49	Graphene-Scaffolded Na ₃ V ₂ (PO ₄) ₃ Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries. ACS Applied Materials & 2017, 9, 7177-7184.	4.0	156
50	Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. RSC Advances, 2012, 2, 3423.	1.7	151
51	Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Letters, 2019, 4, 1717-1724.	8.8	151
52	Stable Li Metal Anode with "lon–Solvent-Coordinated―Nonflammable Electrolyte for Safe Li Metal Batteries. ACS Energy Letters, 2019, 4, 483-488.	8.8	148
53	Recent Progress in Ironâ€Based Electrode Materials for Gridâ€Scale Sodiumâ€Ion Batteries. Small, 2018, 14, 1703116.	5.2	146
54	A tin(<scp>ii</scp>) sulfide–carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16424-16428.	5.2	142

#	Article	IF	Citations
55	High-Performance Olivine NaFePO ₄ Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17977-17984.	4.0	141
56	A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-Ion Batteries. CheM, 2018, 4, 1167-1180.	5.8	140
57	3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy, 2019, 56, 160-168.	8.2	134
58	A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7181.	5.2	130
59	Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 7406-7412.	5.2	130
60	Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. Electrochimica Acta, 2004, 49, 4189-4196.	2.6	128
61	Exploring Sodiumâ€lon Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ballâ€Milling Method. Small, 2018, 14, e1802694.	5.2	127
62	A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries. ACS Applied Materials & Dimersion (2015), 7, 21095-21099.	4.0	125
63	Electrospun TiO ₂ /C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16684-16689.	4.0	121
64	An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an "Adsorptionâ€Intercalation/Fillingâ€∙Hybrid Mechanism. Advanced Energy Materials, 2022, 12, .	10.2	121
65	A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24119-24126.	4.0	119
66	A Safer Sodiumâ€ion Battery Based on Nonflammable Organic Phosphate Electrolyte. Advanced Science, 2016, 3, 1600066.	5.6	116
67	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2018, 10, 593-601.	4.0	116
68	Low Defect FeFe(CN) ₆ Framework as Stable Host Material for High Performance Li-lon Batteries. ACS Applied Materials & Defect FeFe(CN) ₄	4.0	115
69	Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Liâ€ion Batteries by Chemical Prelithiation of Graphite Anode. Advanced Functional Materials, 2021, 31, 2101181.	7.8	115
70	Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. Energy Storage Materials, 2019, 22, 330-336.	9.5	111
71	Developments and Perspectives on Emerging High-Energy-Density Sodium-Metal Batteries. CheM, 2019, 5, 2547-2570.	5.8	110
72	Ultralowâ€Strain Znâ€Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage. Advanced Functional Materials, 2020, 30, 1910327.	7.8	110

#	Article	IF	Citations
73	An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries. Electrochemistry Communications, 2012, 21, 36-38.	2.3	108
74	Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy, 2019, 64, 103903.	8.2	105
75	Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5708-5713.	5.2	104
76	Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4988.	5.2	103
77	Green Synthesis and Stable Li-Storage Performance of FeSi ₂ /Si@C Nanocomposite for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 3753-3758.	4.0	102
78	A Solar Rechargeable Flow Battery Based on Photoregeneration of Two Soluble Redox Couples. ChemSusChem, 2013, 6, 802-806.	3.6	102
79	Suppressing Voltage Fading of Liâ€Rich Oxide Cathode via Building a Wellâ€Protected and Partiallyâ€Protonated Surface by Polyacrylic Acid Binder for Cycleâ€Stable Liâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1904264.	10.2	101
80	Novel Ceramic-Grafted Separator with Highly Thermal Stability for Safe Lithium-Ion Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 25970-25975.	4.0	100
81	A Li+-conductive microporous carbon–sulfur composite for Li-S batteries. Electrochimica Acta, 2013, 87, 497-502.	2.6	99
82	Safer lithium ion batteries based on nonflammable electrolyte. Journal of Power Sources, 2015, 279, 6-12.	4.0	93
83	SiC–Sb–C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. Electrochimica Acta, 2013, 87, 41-45.	2.6	92
84	A Nonflammable Na ⁺ â€Based Dualâ€Carbon Battery with Lowâ€Cost, High Voltage, and Long Cycle Life. Advanced Energy Materials, 2018, 8, 1802176.	10.2	90
85	Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Chemical Communications, 2013, 49, 11370.	2.2	89
86	Dual Coreâ€"Shell Structured Si@SiO _{<i>x</i>} @C Nanocomposite Synthesized via a One-Step Pyrolysis Method as a Highly Stable Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Amp; Interfaces, 2016, 8, 31611-31616.	4.0	88
87	Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries. Journal of Power Sources, 2015, 293, 784-789.	4.0	87
88	Surface-Modified Graphite as an Improved Intercalating Anode for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2003, 6, A30.	2.2	86
89	Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17768.	6.7	86
90	Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19709-19718.	5.2	86

#	Article	IF	Citations
91	Anodically electrodeposited iridium oxide films microelectrodes for neural microstimulation and recording. Sensors and Actuators B: Chemical, 2009, 137, 334-339.	4.0	83
92	Li ⁺ -Conductive Polymer-Embedded Nano-Si Particles as Anode Material for Advanced Li-ion Batteries. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3508-3512.	4.0	83
93	Understanding of the sodium storage mechanism in hard carbon anodes. , 2022, 4, 1133-1150.		83
94	Grapheneâ€Wrapped Na ₂ C ₁₂ H ₆ O ₄ Nanoflowers as High Performance Anodes for Sodiumâ€ion Batteries. Small, 2016, 12, 583-587.	5.2	82
95	Enabling an intrinsically safe and highâ€energyâ€density 4.5 Vâ€class Liâ€ion battery with nonflammable electrolyte. InformaÄnÄ-Materiály, 2020, 2, 984-992.	8.5	81
96	TiO ₂ â€Coated Interlayerâ€Expanded MoSe ₂ /Phosphorusâ€Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage. Advanced Science, 2019, 6, 1801222.	5.6	80
97	<i>In situ</i> N-doped carbon modified (Co _{0.5} Ni _{0.5}) ₉ S ₈ solid-solution hollow spheres as high-capacity anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 8268-8276.	5.2	79
98	Temperature-sensitive cathode materials for safer lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2845.	15.6	77
99	Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium storage. CheM, 2021, 7, 2684-2694.	5.8	77
100	Electroactive organic anionâ€doped polypyrrole as a low cost and renewable cathode for sodiumâ€ion batteries. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 114-118.	2.4	76
101	Investigation of the Effect of Fluoroethylene Carbonate Additive on Electrochemical Performance of Sb-Based Anode for Sodium-Ion Batteries. Electrochimica Acta, 2016, 190, 402-408.	2.6	73
102	Facile hydrothermal synthesis of vanadium oxides nanobelts by ethanol reduction of peroxovanadium complexes. Ceramics International, 2013, 39, 129-141.	2.3	72
103	Graphene-supported TiO ₂ nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 11351-11356.	5.2	72
104	An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries. Journal of Power Sources, 2013, 227, 106-110.	4.0	71
105	A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core–shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23238-23242.	5.2	70
106	Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1337-1343.	4.0	69
107	Yolk–Shell TiO ₂ @C Nanocomposite as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 345-353.	4.0	69
108	Sulfurâ€Based Electrodes that Function via Multielectron Reactions for Roomâ€Temperature Sodiumâ€Ion Storage. Angewandte Chemie - International Edition, 2019, 58, 18324-18337.	7.2	69

#	Article	IF	CITATIONS
109	Building thermally stable Li-ion batteries using a temperature-responsive cathode. Journal of Materials Chemistry A, 2016, 4, 11239-11246.	5.2	68
110	Ethylene Carbonateâ€Free Propylene Carbonateâ€Based Electrolytes with Excellent Electrochemical Compatibility for Liâ€Ion Batteries through Engineering Electrolyte Solvation Structure. Advanced Energy Materials, 2021, 11, 2003905.	10.2	68
111	Template-directed synthesis of Co2P/MoSe2 in a N-doped carbon hollow structure for efficient and stable sodium/potassium ion storage. Nano Energy, 2022, 93, 106897.	8.2	68
112	A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochimica Acta, 2020, 332, 135533.	2.6	67
113	A novel Fe-defect induced pure-phase Na4Fe2.91(PO4)2P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries. Nano Energy, 2022, 91, 106680.	8.2	67
114	Tunable Electrocatalytic Behavior of Sodiated MoS ₂ Active Sites toward Efficient Sulfur Redox Reactions in Roomâ€Temperature Naâ€"S Batteries. Advanced Materials, 2021, 33, e2100229.	11.1	66
115	Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries. , 2021, 3, 956-977.		66
116	Effect of Eliminating Water in Prussian Blue Cathode for Sodiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	7.8	66
117	Fe(CN)6â^'4-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries. RSC Advances, 2012, 2, 5495.	1.7	64
118	A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. Green Energy and Environment, 2017, 2, 310-315.	4.7	63
119	Mixed polyanion cathode materials: Toward stable and high-energy sodium-ion batteries. Journal of Energy Chemistry, 2021, 60, 635-648.	7.1	63
120	Symmetric Sodium-Ion Capacitor Based on Na _{0.44} MnO ₂ Nanorods for Low-Cost and High-Performance Energy Storage. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11689-11698.	4.0	62
121	Emerging Intercalation Cathode Materials for Multivalent Metalâ€lon Batteries: Status and Challenges. Small Structures, 2021, 2, 2100082.	6.9	61
122	Facile synthesis and stable lithium storage performances of Sn-sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. Journal of Materials Chemistry, 2010, 20, 7266.	6.7	60
123	Highly Selective and Pollutionâ€Free Electrochemical Extraction of Lithium by a Polyaniline/Li _{<i>x</i>} Mn ₂ O ₄ Cell. ChemSusChem, 2019, 12, 1361-1367.	3.6	60
124	Designing Advanced Electrolytes for Lithium Secondary Batteries Based on the Coordination Number Rule. ACS Energy Letters, 2021, 6, 4282-4290.	8.8	60
125	Molecular structures of polymer/sulfur composites for lithium–sulfur batteries with long cycle life. Journal of Materials Chemistry A, 2013, 1, 9517.	5.2	59
126	Electrolytes for Dualâ€Carbon Batteries. ChemElectroChem, 2019, 6, 2615-2629.	1.7	59

#	Article	IF	Citations
127	A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. Journal of Energy Chemistry, 2020, 44, 33-40.	7.1	59
128	High Rate, Long Lifespan LiV ₃ O ₈ Nanorods as a Cathode Material for Lithiumâ€lon Batteries. Small, 2017, 13, 1603148.	5.2	57
129	Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries. ACS Applied Materials & Empty Interfaces, 2020, 12, 16411-16416.	4.0	55
130	Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves. Angewandte Chemie, 2021, 133, 21480-21488.	1.6	55
131	Preparation and electrochemical performance of Sn–Co–C composite as anode material for Li-ion batteries. Journal of Power Sources, 2009, 189, 730-732.	4.0	54
132	Design Strategies for Highâ€Voltage Aqueous Batteries. Small Structures, 2021, 2, 2100001.	6.9	54
133	Activated iridium oxide films fabricated by asymmetric pulses for electrical neural microstimulation and recording. Electrochemistry Communications, 2008, 10, 778-782.	2.3	52
134	Novel 2D Layered Molybdenum Ditelluride Encapsulated in Fewâ€Layer Graphene as Highâ€Performance Anode for Lithiumâ€Ion Batteries. Small, 2018, 14, e1703680.	5.2	52
135	Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. Journal of Materials Chemistry A, 2018, 6, 23396-23407.	5.2	52
136	High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38141-38150.	4.0	51
137	In Situ Formation of Co ₉ S ₈ Nanoclusters in Sulfur-Doped Carbon Foam as a Sustainable and High-Rate Sodium-Ion Anode. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19218-19226.	4.0	51
138	Structural and Electrochemical Characterization of Nanocrystalline Li[Li0.12Ni0.32Mn0.56]O2Synthesized by a Polymer-Pyrolysis Route. Journal of Physical Chemistry B, 2005, 109, 1148-1154.	1.2	50
139	Improvement of the electrochemical properties of V3O7·H2O nanobelts for Li battery application through synthesis of V3O7@C core-shell nanostructured composites. Current Applied Physics, 2011, 11, 1159-1163.	1.1	50
140	Novel Alkaline Zn/Na _{0.44} MnO ₂ Dual-Ion Battery with a High Capacity and Long Cycle Lifespan. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34108-34115.	4.0	50
141	Microstructureâ€Dependent Charge/Discharge Behaviors of Hollow Carbon Spheres and its Implication for Sodium Storage Mechanism on Hard Carbon Anodes. Small, 2021, 17, e2102248.	5.2	50
142	Na3V2(PO4)3/C nanocomposite synthesized via pre-reduction process as high-performance cathode material for sodium-ion batteries. Journal of Alloys and Compounds, 2015, 646, 170-174.	2.8	48
143	An All-solid-state and All-organic Sodium-ion Battery based on Redox-active Polymers and Plastic Crystal Electrolyte. Electrochimica Acta, 2015, 178, 55-59.	2.6	47
144	Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography. Materials Today, 2019, 27, 21-32.	8.3	47

#	Article	IF	CITATIONS
145	Bis(2,2,2-trifluoroethyl) methylphosphonate: An Novel Flame-retardant Additive for Safe Lithium-ion Battery. Electrochimica Acta, 2014, 129, 300-304.	2.6	46
146	Recent Developments in Cathode Materials for Na Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 211-241.	2.2	46
147	Transition metal oxides based on conversion reaction for sodium-ion battery anodes. Materials Today Chemistry, 2018, 9, 114-132.	1.7	44
148	An all-vanadium aqueous lithium ion battery with high energy density and long lifespan. Energy Storage Materials, 2019, 18, 92-99.	9.5	44
149	n-Type redox behaviors of polybithiophene and its implications for anodic Li and Na storage materials. Electrochimica Acta, 2012, 78, 27-31.	2.6	43
150	Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage. ACS Applied Materials & Limiting Representation (2016), 8, 18867-18877.	4.0	43
151	A high voltage cathode of Na _{2+2x} Fe _{2â^'x} (SO ₄) ₃ intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. Journal of Materials Chemistry A. 2018. 6. 4354-4364.	5.2	43
152	A Bifunctional Fluorophosphate Electrolyte for Safer Sodium-Ion Batteries. IScience, 2018, 10, 114-122.	1.9	43
153	Grapheneâ€Modified TiO ₂ Microspheres Synthesized by a Facile Sprayâ€Drying Route for Enhanced Sodiumâ€Ion Storage. Particle and Particle Systems Characterization, 2016, 33, 545-552.	1.2	42
154	A temperature-sensitive poly(3-octylpyrrole)/carbon composite as a conductive matrix of cathodes for building safer Li-ion batteries. Energy Storage Materials, 2019, 17, 275-283.	9.5	42
155	Electrochemical performances of Al-based composites as anode materials for Li-ion batteries. Electrochimica Acta, 2009, 54, 4118-4122.	2.6	40
156	An electrolyte additive for thermal shutdown protection of Li-ion batteries. Electrochemistry Communications, 2012, 25, 98-100.	2.3	40
157	Enhanced electrochemical performance of Mg-doped LiCoO2 synthesized by a polymer-pyrolysis method. Ceramics International, 2014, 40, 11245-11249.	2.3	40
158	Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39651-39660.	4.0	40
159	High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double Na ₃ V ₂ (PO ₄) ₃ Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 27833-27838.	4.0	40
160	Fe 2 O 3 amorphous nanoparticles/graphene composite as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 711, 15-21.	2.8	39
161	Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. Nanoscale, 2019, 11, 21999-22005.	2.8	39
162	A Green and Scalable Synthesis of Na ₃ Fe ₂ (PO ₄)P ₂ O ₇ /rGO Cathode for Highâ€Rate and Longâ€Life Sodiumâ€Ion Batteries. Small Methods, 2021, 5, e2100372.	4.6	39

#	Article	IF	CITATIONS
163	Bis(2,2,2-Trifluoroethyl) Ethylphosphonate as Novel High-efficient Flame Retardant Additive for Safer Lithium-ion Battery. Electrochimica Acta, 2015, 165, 67-71.	2.6	38
164	Highly Electrochemicallyâ€Reversible Mesoporous Na ₂ FePO ₄ F/C as Cathode Material for Highâ€Performance Sodiumâ€lon Batteries. Small, 2019, 15, e1903723.	5.2	38
165	Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries. Ceramics International, 2017, 43, 9630-9635.	2.3	37
166	An Al-doped high voltage cathode of Na ₄) ₂ P ₂ O ₇ enabling highly stable 4 V full sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18940-18949.	5.2	37
167	An All-Phosphate and Zero-Strain Sodium-Ion Battery Based on Na ₃ V ₂ (PO ₄) ₃ Cathode, NaTi ₂ (PO ₄) ₃ Anode, and Trimethyl Phosphate Electrolyte with Intrinsic Safety and Long Lifespan, ACS Applied Materials & Discrete Samp: Interfaces, 2017, 9, 43733-43738.	4.0	36
168	Magnesio-mechanochemical reduced SiO for high-performance lithium ion batteries. Journal of Power Sources, 2018, 407, 112-122.	4.0	36
169	Metal/ <scp>covalentâ€organic</scp> frameworks for electrochemical energy storage applications. EcoMat, 2021, 3, e12133.	6.8	36
170	Synthesis and electrochemical properties of submicron LiNi0.8Co0.2O2 by a polymer-pyrolysis method. Electrochimica Acta, 2008, 53, 3007-3012.	2.6	35
171	Facile and reversible digestion and regeneration of zirconium-based metal-organic frameworks. Communications Chemistry, 2020, 3, .	2.0	35
172	Improved rate capability of the conducting functionalized FTO-coated Li-[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ cathode material for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17113-17119.	5.2	34
173	Nanospherical-Like Manganese Monoxide/Reduced Graphene Oxide Composite Synthesized by Electron Beam Radiation as Anode Material for High-Performance Lithium-Ion Batteries. Electrochimica Acta, 2016, 196, 431-439.	2.6	34
174	High-Capacity Hard Carbon Pyrolyzed from Subbituminous Coal as Anode for Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 729-735.	2.5	34
175	Novel Sodium–Poly(tartaric acid)Borate-Based Single-Ion Conducting Polymer Electrolyte for Sodium–Metal Batteries. ACS Applied Energy Materials, 2020, 3, 10053-10060.	2.5	34
176	Building a Cycle-Stable Fe–Si Alloy/Carbon Nanocomposite Anode for Li-Ion Batteries through a Covalent-Bonding Method. ACS Applied Materials & Interfaces, 2020, 12, 30503-30509.	4.0	34
177	Amorphous NaVOPO ₄ as a High-Rate and Ultrastable Cathode Material for Sodium-Ion Batteries. CCS Chemistry, 2021, 3, 2428-2436.	4.6	34
178	Perylenediimide dyes as a cheap and sustainable cathode for lithium ion batteries. Materials Letters, 2016, 175, 191-194.	1.3	33
179	Self-Healing Double-Cross-Linked Supramolecular Binders of a Polyacrylamide-Grafted Soy Protein Isolate for Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 12799-12808.	3.2	33
180	Enabling stable and high-rate cycling of a Ni-rich layered oxide cathode for lithium-ion batteries by modification with an artificial Li ⁺ -conducting cathode-electrolyte interphase. Journal of Materials Chemistry A, 2021, 9, 11623-11631.	5.2	33

#	Article	IF	CITATIONS
181	Sodiumâ€lon Batteries: Prussian Blue Cathode Materials for Sodiumâ€lon Batteries and Other Ion Batteries (Adv. Energy Mater. 17/2018). Advanced Energy Materials, 2018, 8, 1870079.	10.2	32
182	Polyaniline hollow nanofibers prepared by controllable sacrifice-template route as high-performance cathode materials for sodium-ion batteries. Electrochimica Acta, 2019, 301, 352-358.	2.6	32
183	Toward wideâ€ŧemperature electrolyte for lithium–ion batteries. , 2022, 1, .		32
184	Antimony-Coated SiC Nanoparticles as Stable and High-Capacity Anode Materials for Li-Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 15196-15201.	1.5	30
185	Poly(3-butylthiophene)-based positive-temperature-coefficient electrodes for safer lithium-ion batteries. Electrochimica Acta, 2016, 187, 173-178.	2.6	30
186	Coaxial Three-Layered Carbon/Sulfur/Polymer Nanofibers with High Sulfur Content and High Utilization for Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11626-11633.	4.0	29
187	AlF ₃ -Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes. Chemical Communications, 2018, 54, 8347-8350.	2.2	28
188	Surface Modification of Fe ₇ S ₈ /C Anode via Ultrathin Amorphous TiO ₂ Layer for Enhanced Sodium Storage Performance. Small, 2020, 16, e2000745.	5.2	28
189	Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. Journal of Solid State Electrochemistry, 2006, 10, 283-287.	1.2	27
190	Electrochemical properties of nano-crystalline LiNi0.5Mn1.5O4 synthesized by polymer-pyrolysis method. Journal of Solid State Electrochemistry, 2008, 12, 687-691.	1,2	27
191	Controlled synthesis and electrochemical properties of vanadium oxides with different nanostructures. Bulletin of Materials Science, 2012, 35, 369-376.	0.8	27
192	Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Green Energy and Environment, 2022, 7, 1253-1262.	4.7	27
193	Hard Carbon Fibers Pyrolyzed from Wool as High-Performance Anode for Sodium-Ion Batteries. Jom, 2016, 68, 2579-2584.	0.9	26
194	Building a Thermal Shutdown Cathode for Liâ€ion Batteries Using Temperatureâ€Responsive Poly(3â€Dodecylthiophene). Energy Technology, 2020, 8, 2000365.	1.8	26
195	Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: A mini review. Electrochemistry Communications, 2021, 122, 106897.	2.3	26
196	Fabrication of belt-like VO2(M)@C core-shell structured composite to improve the electrochemical properties of VO2(M). Current Applied Physics, 2013, 13, 47-52.	1.1	25
197	Surface-engineering enhanced sodium storage performance of Na3V2(PO4)3 cathode via in-situ self-decorated conducting polymer route. Science China Chemistry, 2017, 60, 1546-1553.	4.2	24
198	Zero-strain Na ₄ Fe ₇ (PO ₄) ₆ as a novel cathode material for sodium–ion batteries. Chemical Communications, 2019, 55, 9043-9046.	2.2	24

#	Article	IF	Citations
199	All-Climate High-Voltage Commercial Lithium-Ion Batteries Based on Propylene Carbonate Electrolytes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 574-580.	4.0	24
200	A stable "rocking-chair" zinc-ion battery boosted by low-strain Zn3V4(PO4)6 cathode. Nano Energy, 2022, 100, 107520.	8.2	24
201	Well-defined Na2Zn3[Fe(CN)6]2 nanocrystals as a low-cost and cycle-stable cathode material for Na-ion batteries. Electrochemistry Communications, 2019, 98, 78-81.	2.3	23
202	Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent. Chemical Communications, 2020, 56, 6559-6562.	2.2	23
203	Pb-sandwiched nanoparticles as anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 291-295.	1.2	22
204	Enabling a high capacity and long cycle life for nano-Si anodes by building a stable solid interface with a Li ⁺ -conducting polymer. Journal of Materials Chemistry A, 2015, 3, 9938-9944.	5.2	22
205	Ultrathin phyllosilicate nanosheets as anode materials with superior rate performance for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 1397-1402.	5.2	22
206	The Underlying Mechanism for Reduction Stability of Organic Electrolytes in Lithium Secondary Batteries. Chemical Science, 2021, 12, 9037-9041.	3.7	22
207	A solar rechargeable battery based on the sodium ion storage mechanism with Fe ₂ (MoO ₄) ₃ microspheres as anode materials. Journal of Materials Chemistry A, 2018, 6, 10627-10631.	5.2	21
208	A Novel Dendriteâ€Free Lithium Metal Anode via Oxygen and Boron Codoped Honeycomb Carbon Skeleton. Small, 2022, 18, e2104876.	5.2	21
209	Nanophase ZnV2O4 as stable and high capacity Li insertion electrode for Li-ion battery. Current Applied Physics, 2015, 15, 435-440.	1.1	20
210	Synthesis of Monoclinic Li[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ Nanoparticles by a Layeredâ€Template Route for Highâ€Performance Liâ€Ion Batteries. European Journal of Inorganic Chemistry, 2013, 2013, 2887-2892.	1.0	19
211	Electrochemical Insight into the Sodium-Ion Storage Mechanism on a Hard Carbon Anode. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18914-18922.	4.0	18
212	Enhanced electrochemical performance of submicron LiCoO2 synthesized by polymer pyrolysis method. Journal of Solid State Electrochemistry, 2007, 12, 149-153.	1.2	17
213	Facile preparation and electrochemical characterization of poly (4-methoxytriphenylamine)-modified separator as a self-activated potential switch for lithium ion batteries. Electrochimica Acta, 2013, 108, 191-195.	2.6	17
214	Pseudocapacitive Trimetal Fe _{0.8} CoMnO ₄ Nanoparticles@Carbon Nanofibers as Highâ€Performance Sodium Storage Anode with Selfâ€Supported Mechanism. Advanced Functional Materials, 2020, 30, 2001718.	7.8	16
215	A Solidâ€Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithiumâ€Sulfur Batteries. Small, 2022, 18, e2106144.	5 . 2	16
216	An advanced low-cost cathode composed of graphene-coated Na2.4Fe1.8(SO4)3 nanograins in a 3D graphene network for ultra-stable sodium storage. Journal of Energy Chemistry, 2021, 54, 564-570.	7.1	15

#	Article	IF	Citations
217	Organic-conjugated polyanthraquinonylimide cathodes for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2022, 10, 14111-14120.	5.2	15
218	A Membrane-Free and Energy-Efficient Three-Step Chlor-Alkali Electrolysis with Higher-Purity NaOH Production. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45126-45132.	4.0	14
219	<i>In Situ</i> Formed Artificial Solid Electrolyte Interphase for Boosting the Cycle Stability of Si-Based Anodes for Li-Ion Batteries. ACS Applied Materials & Si-Based Anodes for	4.0	14
220	A redoxâ€active polythiopheneâ€modified separator for safety control of lithiumâ€ion batteries. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1487-1493.	2.4	13
221	Enhanced Cycling Stability of Sulfur Cathode Surface-Modified by Poly(N-methylpyrrole). Electrochimica Acta, 2014, 135, 108-113.	2.6	13
222	High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. Science China Chemistry, 2019, 62, 118-125.	4.2	13
223	Template synthesis of mesoporous Li2MnSiO4@C composite with improved lithium storage properties. Electrochimica Acta, 2018, 291, 124-131.	2.6	12
224	Improved Sodium Storage Performance of Na _{0.44} MnO ₂ Cathode at a High Temperature by Al ₂ 0 ₃ Coating. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 1357-1364.	2.2	12
225	Hard carbon anode derived from camellia seed shell with superior cycling performance for sodium-ion batteries. Journal Physics D: Applied Physics, 2020, 53, 414002.	1.3	11
226	Monoclinic αâ€NaVOPO 4 as cathode materials for sodiumâ€ions batteries: Experimental and DFT investigation. International Journal of Energy Research, 2021, 45, 1703-1719.	2.2	11
227	A solar storable fuel cell with efficient photo-degradation of organic waste for direct electricity generation. Energy Storage Materials, 2016, 5, 165-170.	9.5	10
228	A controllable thermal-sensitivity separator with an organic–inorganic hybrid interlayer for high-safety lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2313-2319.	3.2	10
229	Will Vanadiumâ€Based Electrode Materials Become the Future Choice for Metalâ€Ion Batteries?. ChemSusChem, 2022, 15, .	3.6	10
230	SnO2-Reduced Graphene Oxide Nanocomposites via Microwave Route as Anode for Sodium-Ion Battery. Jom, 2016, 68, 2607-2612.	0.9	9
231	Schwefelâ€basierte Elektroden mit Mehrelektronenreaktionen fýr Raumtemperaturâ€Natriumionenspeicherung. Angewandte Chemie, 2019, 131, 18490-18504.	1.6	9
232	Water-Based Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium—Sulfur Batteries. ACS Applied Materials & Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium—Sulfur Batteries. Account Batteries (1998) Applied Materials & Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium†(1998) Account Batteries (1998) Applied Materials (1998) Account Batteries (1998) Applied Materials (1998) Account Batteries (1998) Account Batt	4.0	9
233	Improved Initial Charging Capacity of Na-poor Na0.44MnO2 via Chemical Presodiation Strategy for Low-cost Sodium-ion Batteries. Chemical Research in Chinese Universities, 2021, 37, 274-279.	1.3	9
234	Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries. Journal of Materials Science and Technology, 2020, 55, 81-88.	5 . 6	7

#	Article	IF	CITATIONS
235	Improved Electrochemical Properties of Al3+-doped 0.5Li2MnO3-0.5LiCo1/3Ni1/3Mn1/3O2 Cathode for Lithium Ion Batteries. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 1261-1264.	0.6	7
236	Low temperature hydrothermal synthesis and electrochemical performances of LiFePO4 microspheres as a cathode material for lithium-ion batteries. Science Bulletin, 2012, 57, 4164-4169.	1.7	6
237	Effect of Li1/3Mn2/3-Substitution on Electrochemical Performance of P2-Na0.74CoO2 Cathode for Sodium-ion Batteries. Electrochimica Acta, 2016, 222, 862-866.	2.6	6
238	Reversible Temperature-Responsive Cathode for Thermal Protection of Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 5236-5244.	2.5	6
239	In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-lon Storage (Adv. Energy Mater. 1/2012). Advanced Energy Materials, 2012, 2, 94-94.	10.2	5
240	Efficient and Facile Electrochemical Process for the Production of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Electrolyte. Electrolyte. ACS Applied Materials & Electrolyte. Electrolyte	4.0	5
241	A Novel Highly Durable Carbon/Silver/Silver Chloride Composite Electrode for High-Definition Transcranial Direct Current Stimulation. Nanomaterials, 2021, 11, 1962.	1.9	5
242	Na _{0.91} MnO ₂ with an Extended Layer Structure and Excellent Pseudocapacitive Behavior as a Cathode Material for Sodium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4505-4512.	2.5	5
243	Sodium Storage Mechanism: Extended "Adsorption–Insertion―Model: A New Insight into the Sodium Storage Mechanism of Hard Carbons (Adv. Energy Mater. 32/2019). Advanced Energy Materials, 2019, 9, 1970125.	10.2	4
244	Discussion on the mechanism of sodium storage of different structural types of carbon material. Scientia Sinica Chimica, 2017, 47, 573-578.	0.2	4
245	Molten salt synthesis of LiMn 1 . 2 Ni 0 . 3 Cr 0 . 1 Co 0 . 15 Al 0 . 23 La. International Journal of Energy Research, 2021, 45, 15424-15437.	2.2	3
246	A Facile and Efficient Chemical Prelithiation of Graphite for Full Capacity Utilization of Liâ€lon Batteries. Energy Technology, 2022, 10, .	1.8	3
247	An efficient and nonflammable organic phosphate electrolyte for dye-sensitized solar cells. Journal of Applied Electrochemistry, 2009, 39, 1939-1942.	1.5	2
248	Organic Alloy Electrolytes for Thermostable Solid-State Dye-Sensitized Solar Cells. Electrochimica Acta, 2014, 147, 535-539.	2.6	2
249	Electrochemical properties of stacked-nanoflake Li4Ti5O12 spinel synthesized by a polymer-pyrolysis method. Current Applied Physics, 2014, 14, 586-589.	1.1	2
250	Sodium Ion Storage: TiO ₂ â€Coated Interlayerâ€Expanded MoSe ₂ /Phosphorusâ€Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage (Adv. Sci. 1/2019). Advanced Science, 2019, 6, 1970005.	5.6	1
251	A Novel Dendriteâ€Free Lithium Metal Anode via Oxygen and Boron Codoped Honeycomb Carbon Skeleton (Small 11/2022). Small, 2022, 18, .	5.2	1
252	Cathode and Anode Materials for Na-Ion Battery. Green Energy and Technology, 2014, , 395-424.	0.4	0