
Mohammed Abbas Virji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5227471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards sustainable additive manufacturing: The need for awareness of particle and vapor releases during polymer recycling, making filament, and fused filament fabrication 3-D printing. Resources, Conservation and Recycling, 2022, 176, 105911.	5.3	20
2	Influence of E-Liquid Humectants, Nicotine, and Flavorings on Aerosol Particle Size Distribution and Implications for Modeling Respiratory Deposition. Frontiers in Public Health, 2022, 10, 782068.	1.3	13
3	Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases. Journal of Chemical Health and Safety, 2021, 28, 268-278.	1.1	8
4	Particle transfer and adherence to human skin compared with cotton glove and pre-moistened polyvinyl alcohol exposure sampling substrates. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 585-598.	0.9	0
5	Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part I: Real-Time Particulate and Gas-Phase Emissions. Journal of Chemical Health and Safety, 2021, 28, 190-200.	1.1	8
6	Assessment of home care aides' respiratory exposure to total volatile organic compounds and chlorine during simulated bathroom cleaning: An experimental design with conventional and "green― products. Journal of Occupational and Environmental Hygiene, 2021, 18, 276-287.	0.4	7
7	Use of 3-Dimensional Printers in Educational Settings: The Need for Awareness of the Effects of Printer Temperature and Filament Type on Contaminant Releases. Journal of Chemical Health and Safety, 2021, 28, 444-456.	1.1	9
8	HLA-DPB1 E69 genotype and exposure in beryllium sensitisation and disease. Occupational and Environmental Medicine, 2021, , oemed-2021-107736.	1.3	1
9	A Strategy for Field Evaluations of Exposures and Respiratory Health of Workers at Small- to Medium-Sized Coffee Facilities. Frontiers in Public Health, 2021, 9, 705225.	1.3	4
10	Respiratory Symptoms in Hospital Cleaning Staff Exposed to a Product Containing Hydrogen Peroxide, Peracetic Acid, and Acetic Acid. Annals of Work Exposures and Health, 2020, 64, 911-911.	0.6	1
11	Work Tasks as Determinants of Respirable and Inhalable Indium Exposure among Workers at an Indium–Tin Oxide Production and Reclamation Facility. Annals of Work Exposures and Health, 2020, 64, 175-184.	0.6	7
12	Exposures and Emissions in Coffee Roasting Facilities and Cafés: Diacetyl, 2,3-Pentanedione, and Other Volatile Organic Compounds. Frontiers in Public Health, 2020, 8, 561740.	1.3	19
13	Evidence for Environmental–Human Microbiota Transfer at a Manufacturing Facility with Novel Work-related Respiratory Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1678-1688.	2.5	16
14	Relationship Between Tasks and Respiratory Health Outcomes in Workers at Coffee Roasting and Packaging Facilities. , 2020, , .		0
15	Work-Related Upper Airway, Eye, and Lower Airway Symptoms in Hospital Staff Exposed to a Cleaning Product Containing Hydrogen Peroxide, Peracetic Acid, and Acetic Acid. , 2020, , .		0
16	The Respiratory Health of a Manufacturing Facility Workforce Following Identification of a Cluster of Novel B-Cell Bronchiolitis-Alveolar Ductitis with Emphysema (BADE). , 2020, , .		0
17	Work-related adverse respiratory health outcomes at a machine manufacturing facility with a cluster of bronchiolitis, alveolar ductitis and emphysema (BADE). Occupational and Environmental Medicine, 2020, 77, 386-392.	1.3	6
18	Workplace indoor environmental quality and asthmaâ€related outcomes in healthcare workers. American Journal of Industrial Medicine, 2020, 63, 417-428.	1.0	3

#	Article	IF	CITATIONS
19	The Burden of Respiratory Abnormalities Among Workers at Coffee Roasting and Packaging Facilities. Frontiers in Public Health, 2020, 8, 5.	1.3	13
20	Peak Inhalation Exposure Metrics Used in Occupational Epidemiologic and Exposure Studies. Frontiers in Public Health, 2020, 8, 611693.	1.3	9
21	Severe lung disease characterized by lymphocytic bronchiolitis, alveolar ductitis, and emphysema (BADE) in industrial machineâ€manufacturing workers. American Journal of Industrial Medicine, 2019, 62, 927-937.	1.0	22
22	Associations of Metrics of Peak Inhalation Exposure and Skin Exposure Indices With Beryllium Sensitization at a Beryllium Manufacturing Facility. Annals of Work Exposures and Health, 2019, 63, 856-869.	0.6	7
23	Peaks, Means, and Determinants of Real-Time TVOC Exposures Associated with Cleaning and Disinfecting Tasks in Healthcare Settings. Annals of Work Exposures and Health, 2019, 63, 759-772.	0.6	13
24	Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers. Journal of Occupational and Environmental Hygiene, 2019, 16, 519-531.	0.4	32
25	Clustering asthma symptoms and cleaning and disinfecting activities and evaluating their associations among healthcare workers. International Journal of Hygiene and Environmental Health, 2019, 222, 873-883.	2.1	24
26	Particle and organic vapor emissions from children's 3-D pen and 3-D printer toys. Inhalation Toxicology, 2019, 31, 432-445.	0.8	21
27	Occupation and task as risk factors for asthma-related outcomes among healthcare workers in New York City. International Journal of Hygiene and Environmental Health, 2019, 222, 211-220.	2.1	20
28	A field evaluation of a single sampler for respirable and inhalable indium and dust measurements at an indium-tin oxide manufacturing facility. Journal of Occupational and Environmental Hygiene, 2019, 16, 66-77.	0.4	6
29	The Long-Term Effects of Cleaning on the Lungs. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1099-1101.	2.5	12
30	Serum YKLâ€40 in workers at an indiumâ€ŧin oxide production facility. Respirology, 2018, 23, 341-342.	1.3	0
31	Respiratory Symptoms in Hospital Cleaning Staff Exposed to a Product Containing Hydrogen Peroxide, Peracetic Acid, and Acetic Acid. Annals of Work Exposures and Health, 2018, 62, 28-40.	0.6	41
32	Three-dimensional printing with nano-enabled filaments releases polymer particles containing carbon nanotubes into air. Indoor Air, 2018, 28, 840-851.	2.0	40
33	Assessing risk of indium lung disease to workers in downstream industries. American Journal of Industrial Medicine, 2017, 60, 310-311.	1.0	5
34	Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer. Journal of Occupational and Environmental Hygiene, 2017, 14, 540-550.	0.4	87
35	Application of the ICRP respiratory tract model to estimate pulmonary retention of industrially sampled indium-containing dusts. Inhalation Toxicology, 2017, 29, 169-178.	0.8	8
36	Current asthma and asthma-like symptoms among workers at a Veterans Administration Medical Center. International Journal of Hygiene and Environmental Health, 2017, 220, 1325-1332.	2.1	13

#	Article	IF	CITATIONS
37	A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring. Annals of Work Exposures and Health, 2017, 61, 773-783.	0.6	10
38	Air and Surface Sampling Method for Assessing Exposures to Quaternary Ammonium Compounds Using Liquid Chromatography Tandem Mass Spectrometry. Annals of Work Exposures and Health, 2017, 61, 724-736.	0.6	20
39	Respirable indium exposures, plasma indium, and respiratory health among indiumâ€ŧin oxide (ITO) workers. American Journal of Industrial Medicine, 2016, 59, 522-531.	1.0	43
40	Emission of particulate matter from a desktop three-dimensional (3D) printer. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 453-465.	1.1	115
41	Annual decline in forced expiratory volume is steeper in aluminum potroom workers than in workers without exposure to potroom fumes. American Journal of Industrial Medicine, 2016, 59, 322-329.	1.0	3
42	O47-5â€Association of metrics of peak exposure with beryllium sensitisation. , 2016, , .		0
43	Characterization of cleaning and disinfecting tasks and product use among hospital occupations. American Journal of Industrial Medicine, 2015, 58, 101-111.	1.0	55
44	Construction of a Job Exposure Matrix to Dust, Fluoride, and Polycyclic Aromatic Hydrocarbons in the Norwegian Aluminum Industry using Prediction Models. Annals of Occupational Hygiene, 2015, 59, 1106-1121.	1.9	1
45	Early Changes in Clinical, Functional, and Laboratory Biomarkers in Workers at Risk of Indium Lung Disease. Annals of the American Thoracic Society, 2014, 11, 1395-1403.	1.5	24
46	Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities. Journal of Occupational and Environmental Hygiene, 2014, 11, 781-792.	0.4	5
47	A Review of Engineered Nanomaterial Manufacturing Processes and Associated Exposures. , 2014, , 103-125.		23
48	Dermal exposure potential from textiles that contain silver nanoparticles. International Journal of Occupational and Environmental Health, 2014, 20, 220-234.	1.2	55
49	Exposures and Cross-shift Lung Function Declines in Wildland Firefighters. Journal of Occupational and Environmental Hygiene, 2014, 11, 591-603.	0.4	49
50	Exposure to volatile organic compounds in healthcare settings. Occupational and Environmental Medicine, 2014, 71, 642-650.	1.3	36
51	Dissolution of the metal sensitizers Ni, Be, Cr in artificial sweat to improve estimates of dermal bioaccessibility. Environmental Sciences: Processes and Impacts, 2014, 16, 341.	1.7	23
52	Harmonization of Measurement Strategies for Exposure to Manufactured Nano-Objects; Report of a Workshop. Annals of Occupational Hygiene, 2012, 56, 1-9.	1.9	80
53	Validation of evacuated canisters for sampling volatile organic compounds in healthcare settings. Journal of Environmental Monitoring, 2012, 14, 977.	2.1	31
54	Release of Beryllium Into Artificial Airway Epithelial Lining Fluid. Archives of Environmental and Occupational Health, 2012, 67, 219-228.	0.7	6

#	Article	IF	CITATIONS
55	Release of beryllium from mineral ores in artificial lung and skin surface fluids. Environmental Geochemistry and Health, 2012, 34, 313-322.	1.8	5
56	Sensitization and chronic beryllium disease at a primary manufacturing facility, part 2: validation of historical exposures. Scandinavian Journal of Work, Environment and Health, 2012, 38, 259-269.	1.7	4
57	Sensitization and chronic beryllium disease at a primary manufacturing facility, part 1: historical exposure reconstruction. Scandinavian Journal of Work, Environment and Health, 2012, 38, 247-258.	1.7	9
58	Sensitization and chronic beryllium disease at a primary manufacturing facility, part 3: exposure–response among short-term workers. Scandinavian Journal of Work, Environment and Health, 2012, 38, 270-281.	1.7	37
59	Assessing exposures to cleaning and disinfecting chemicals for an epidemiologic study of asthma in healthcare occupations. Occupational and Environmental Medicine, 2011, 68, A79-A80.	1.3	Ο
60	Dissolution of beryllium in artificial lung alveolar macrophage phagolysosomal fluid. Chemosphere, 2011, 83, 1181-1187.	4.2	13
61	Measurement of airborne nanoparticle surface area using a filter-based gas adsorption method for inhalation toxicology experiments. Nanotoxicology, 2011, 5, 687-699.	1.6	9
62	Influence of artificial gastric juice composition on bioaccessibility of cobalt- and tungsten-containing powders. International Journal of Hygiene and Environmental Health, 2010, 213, 107-115.	2.1	24
63	Characterization of Exposures to Airborne Nanoscale Particles During Friction Stir Welding of Aluminum. Annals of Occupational Hygiene, 2010, 54, 486-503.	1.9	27
64	Characteristics of Beryllium Exposure to Small Particles at a Beryllium Production Facility. Annals of Occupational Hygiene, 2010, 55, 70-85.	1.9	14
65	Release of Beryllium from Beryllium-Containing Materials in Artificial Skin Surface Film Liquids. Annals of Occupational Hygiene, 2010, 55, 57-69.	1.9	14
66	Dissolution of cemented carbide powders in artificial sweat: implications for cobalt sensitization and contact dermatitis. Journal of Environmental Monitoring, 2010, 12, 1815.	2.1	11
67	Understanding Workplace Processes and Factors that Influence Exposures to Engineered Nanomaterials. International Journal of Occupational and Environmental Health, 2010, 16, 365-377.	1.2	14
68	Characterization of Exposures To Nanoscale Particles and Fibers During Solid Core Drilling of Hybrid Carbon Nanotube Advanced Composites. International Journal of Occupational and Environmental Health, 2010, 16, 434-450.	1.2	64
69	A Reconsideration of Acute Beryllium Disease. Environmental Health Perspectives, 2009, 117, 1250-1256.	2.8	56
70	Agreement between Task-Based Estimates of the Full-Shift Noise Exposure and the Full-Shift Noise Dosimetry. Annals of Occupational Hygiene, 2009, 53, 201-14.	1.9	18
71	Characterization of exposures among cemented tungsten carbide workers. Part II: Assessment of surface contamination and skin exposures to cobalt, chromium and nickel. Journal of Exposure Science and Environmental Epidemiology, 2009, 19, 423-434.	1.8	30
72	Characterization of exposures among cemented tungsten carbide workers. Part I: Size-fractionated exposures to airborne cobalt and tungsten particles. Journal of Exposure Science and Environmental Epidemiology, 2009, 19, 475-491.	1.8	36

#	Article	IF	CITATIONS
73	Dissolution and reactive oxygen species generation of inhaled cemented tungsten carbide particles in artificial human lung fluids. Journal of Physics: Conference Series, 2009, 151, 012045.	0.3	6
74	Summary of the Findings from the Exposure Assessments for Metalworking Fluid Mortality and Morbidity Studies. Journal of Occupational and Environmental Hygiene, 2003, 18, 855-864.	0.5	41
75	Quantification of Respirable, Thoracic, and Inhalable Quartz Exposures by FT-IR in Personal Impactor Samples from Construction Sites. Journal of Occupational and Environmental Hygiene, 2002, 17, 580-590.	0.5	8
76	Analysis of Quartz by FT-IR in Air Samples of Construction Dust. Journal of Occupational and Environmental Hygiene, 2002, 17, 165-175.	0.5	10
77	Identifying the Determinants of Viable Microorganisms in the Air and Bulk Metalworking Fluids. AIHAJ: A Journal for the Science of Occupational and Environmental Health and Safety, 2000, 61, 788-797.	0.4	8
78	A field investigation of the acute respiratory effects of metal working fluids. I. Effects of aerosol exposures. , 1997, 31, 756-766.		44
79	Exposure Assessment for a Field Investigation of the Acute Respiratory Effects of Metalworking Fluids, I. Summary of Findings, AIHA Journal, 1996, 57, 1154-1162.	0.4	39