
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5227231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of saw palmetto extract on the vanilloid receptor <scp>TRPV1</scp> . LUTS: Lower Urinary Tract Symptoms, 2022, 14, 117-121.	0.6	3
2	Comparative characterization of β-adrenoceptors in the bladder, heart, and lungs of rats: Alterations in spontaneously hypertensive rats. Journal of Pharmacological Sciences, 2022, 148, 51-55.	1.1	2
3	Beneficial Effects of Saw Palmetto Fruit Extract on Urinary Symptoms in Japanese Female Subjects by a Multicenter, Randomized, Double-Blind, Placebo-Controlled Study. Nutrients, 2022, 14, 1190.	1.7	2
4	Vasorelaxant effects of benzodiazepines, non-benzodiazepine sedative-hypnotics, and tandospirone on isolated rat arteries. European Journal of Pharmacology, 2021, 892, 173744.	1.7	12
5	Possible Involvement of Muscarinic Receptor Blockade in Mirabegron Therapy for Patients with Overactive Bladder. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 201-206.	1.3	8
6	Muscarinic receptor binding activity in rat tissues by vibegron and prediction of its receptor occupancy levels in the human bladder. International Journal of Urology, 2021, 28, 1298-1303.	0.5	9
7	Beneficial effects of a nobiletinâ€rich formulated supplement of Sikwasa (<i>C. depressa</i>) peel on cognitive function in elderly Japanese subjects; A multicenter, randomized, doubleâ€blind, placeboâ€controlled study. Food Science and Nutrition, 2021, 9, 6844-6853.	1.5	10
8	Direct inÂvitro and inÂvivo demonstration of muscarinic receptor binding by the novel radioligand, [3H]5-hydroxymethyltolterodine, in the bladder and other tissues of rats. Journal of Pharmacological Sciences, 2020, 142, 127-130.	1.1	0
9	Muscarinic receptor binding of fesoterodine, 5-hydroxymethyl tolterodine, and tolterodine in rat tissues after the oral, intravenous, or intravesical administration. Journal of Pharmacological Sciences, 2019, 140, 73-78.	1.1	3
10	Basic and clinical aspects of antimuscarinic agents used to treat overactive bladder. , 2018, 189, 130-148.		68
11	Clinical Effects of Formulated Food of <i><scp>P</scp>eucedanum japonicum</i> Extract and Saw Palmetto Extract in Male Patients with Lower Urinary Tract Symptoms. LUTS: Lower Urinary Tract Symptoms, 2018, 10, 167-174.	0.6	3
12	Urinary Excretion Contributes to Long-Lasting Blockade of Bladder Muscarinic Receptors by Imidafenacin: Effect of Bilateral Ureteral Ligation. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 69-74.	1.3	8
13	Characterization of muscarinic and P2X receptors in the urothelium and detrusor muscle of the rat bladder. Journal of Pharmacological Sciences, 2016, 131, 58-63.	1.1	3
14	Characterization of muscarinic receptor binding by the novel radioligand, [3H]imidafenacin, in the bladder and other tissues of rats. Journal of Pharmacological Sciences, 2016, 131, 184-189.	1.1	3
15	Muscarinic Receptor Binding in Rat Bladder Urothelium and Detrusor Muscle by Intravesical Solifenacin. Biological and Pharmaceutical Bulletin, 2016, 39, 1167-1171.	0.6	7
16	Effects of Saw Palmetto Extract on Urodynamic Parameters, Bladder Muscarinic and Purinergic Receptors and Urinary Cytokines in Rats with Cyclophosphamideâ€Induced Cystitis. LUTS: Lower Urinary Tract Symptoms, 2014, 6, 57-63.	0.6	5
17	Neuroprotective effect of nobiletin on cerebral ischemia–reperfusion injury in transient middle cerebral artery-occluded rats. Brain Research, 2014, 1559, 46-54.	1.1	76
18	Muscarinic Receptor Binding of the Novel Radioligand, [3H]Imidafenacin in the Human Bladder and Parotid Gland. Journal of Pharmacological Sciences, 2014, 124, 40-46.	1.1	7

#	Article	IF	CITATIONS
19	Bladder Endothelin-1 Receptor Binding of Bosentan and Ambrisentan. Journal of Pharmacological Sciences, 2014, 124, 86-91.	1.1	2
20	Endothelin-1 Receptors in Rat Tissues: Characterization by Bosentan, Ambrisentan and Cl-1020. Biological and Pharmaceutical Bulletin, 2014, 37, 461-465.	0.6	3
21	Fesoterodine, Its Active Metabolite, and Tolterodine Bind Selectively to Muscarinic Receptors in Human Bladder Mucosa and Detrusor Muscle. Urology, 2013, 81, 920.e1-920.e5.	0.5	7
22	Improvement by Phytotherapeutic Agent of Detrusor Overactivity, Down-Regulation of Pharmacological Receptors and Urinary Cytokines in Rats with Cyclophosphamide Induced Cystitis. Journal of Urology, 2013, 189, 1123-1129.	0.2	16
23	Antiâ€Tumor Effects and Pharmacokinetics of Sâ€40542, a Novel Nonâ€Steroidal Antiâ€Androgen, in Mice. LUTS: Lower Urinary Tract Symptoms, 2013, 5, 44-51.	0.6	0
24	Beneficial Effects of Gosha-jinki-gan and Green Tea Extract in Rats With Chemical Cystitis. Journal of Pharmacological Sciences, 2013, 122, 270-277.	1.1	1
25	Editorial Comment to Suppression of bladder overactivity and oxidative stress by the phytotherapeutic agent, Eviprostat, in a rat model of atherosclerosisâ€induced chronic bladder ischemia. International Journal of Urology, 2012, 19, 675-675.	0.5	Ο
26	Characterization of Bladder Selectivity of Antimuscarinic Agents on the Basis of <i>In Vivo</i> Drug-Receptor Binding. International Neurourology Journal, 2012, 16, 107.	0.5	16
27	Effect of oxybutynin and imidafenacin on central muscarinic receptor occupancy and cognitive function: A monkey PET study with [11C](+)3-MPB. NeuroImage, 2011, 58, 1-9.	2.1	26
28	Up-regulation of nicotinic and muscarinic receptor mRNA in rat bladder by repeated administration of nicotine in relation to the pharmacokinetics. Life Sciences, 2011, 89, 343-348.	2.0	6
29	Characterization of Muscarinic Receptors in the Human Bladder Mucosa: Direct Quantification of Subtypes Using 4-DAMP Mustard. Urology, 2011, 78, 721.e7-721.e12.	0.5	9
30	Muscarinic Receptor Binding of Imidafenacin in the Human Bladder Mucosa and Detrusor and Parotid Gland. LUTS: Lower Urinary Tract Symptoms, 2011, 3, 64-68.	0.6	7
31	α ₁ â€Adrenoceptors and muscarinic receptors in voiding function – binding characteristics of therapeutic agents in relation to the pharmacokinetics. British Journal of Clinical Pharmacology, 2011, 72, 205-217.	1.1	12
32	Selective Binding of Bladder Muscarinic Receptors in Relation to the Pharmacokinetics of a Novel Antimuscarinic Agent, Imidafenacin, to Treat Overactive Bladder. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 365-371.	1.3	45
33	α1-Adrenoceptors in the Urinary Tract. Handbook of Experimental Pharmacology, 2011, , 283-306.	0.9	25
34	The Forefront for Novel Therapeutic Agents Based on the Pathophysiology of Lower Urinary Tract Dysfunction: Bladder Selectivity Based on In Vivo Drug–Receptor Binding Characteristics of Antimuscarinic Agents for Treatment of Overactive Bladder. Journal of Pharmacological Sciences, 2010, 112, 142-150.	1.1	32
35	The <i>N</i> Oxide Metabolite Contributes to Bladder Selectivity Resulting from Oral Propiverine: Muscarinic Receptor Binding and Pharmacokinetics. Drug Metabolism and Disposition, 2010, 38, 1314-1321.	1.7	14
36	Noninvasive evaluation of brain muscarinic receptor occupancy of oxybutynin, darifenacin and imidafenacin in rats by positron emission tomography. Life Sciences, 2010, 87, 175-180.	2.0	28

#	Article	lF	CITATIONS
37	Loss of Muscarinic and Purinergic Receptors in Urinary Bladder of Rats With Hydrochloric Acid-induced Cystitis. Urology, 2010, 76, 1017.e7-1017.e12.	0.5	11
38	Evaluation of the pharmacokinetic interaction of midazolam with ursodeoxycholic acid, ketoconazole and dexamethasone by brain benzodiazepine receptor occupancy. Journal of Pharmacy and Pharmacology, 2010, 63, 58-64.	1.2	5
39	Muscarinic Receptor Binding and Plasma Drug Concentration after the Oral Administration of Propiverine in Mice. LUTS: Lower Urinary Tract Symptoms, 2010, 2, 43-49.	0.6	4
40	Comparison of muscarinic receptor selectivity of solifenacin and oxybutynin in the bladder and submandibular gland of muscarinic receptor knockout mice. European Journal of Pharmacology, 2009, 615, 201-206.	1.7	10
41	Bladder Angiotensin-II Receptors: Characterization and Alteration in Bladder Outlet Obstruction. European Urology, 2009, 55, 482-490.	0.9	29
42	Pharmacological effects of saw palmetto extract in the lower urinary tract. Acta Pharmacologica Sinica, 2009, 30, 271-281.	2.8	51
43	Quantitative analysis of the loss of muscarinic receptors in various peripheral tissues in M ₁ –M ₅ receptor single knockout mice. British Journal of Pharmacology, 2009, 156, 1147-1153.	2.7	45
44	Isolation and Pharmacological Characterization of Fatty Acids from Saw Palmetto Extract. Analytical Sciences, 2009, 25, 553-557.	0.8	45
45	Pharmacologically Relevant Receptor Binding Characteristics and 5.ALPHAReductase Inhibitory Activity of Free Fatty Acids Contained in Saw Palmetto Extract. Biological and Pharmaceutical Bulletin, 2009, 32, 646-650.	0.6	38
46	In vivo characterization of muscarinic receptors in peripheral tissues: evaluation of bladder selectivity of anticholinergic agents to treat overactive bladder. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 463-471.	1.4	9
47	5th International Symposium on receptor mechanisms, signal transduction and drug effects. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 267-268.	1.4	0
48	Alteration of muscarinic and purinergic receptors in urinary bladder of rats with cyclophosphamide-induced interstitial cystitis. Neuroscience Letters, 2008, 436, 81-84.	1.0	24
49	In Vivo Quantitative Autoradiographic Analysis of Brain Muscarinic Receptor Occupancy by Antimuscarinic Agents for Overactive Bladder Treatment. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 774-781.	1.3	41
50	Prediction of .ALPHA.1-Adrenoceptor Occupancy in the Human Prostate from Plasma Concentrations of Silodosin, Tamsulosin and Terazosin to Treat Urinary Obstruction in Benign Prostatic Hyperplasia. Biological and Pharmaceutical Bulletin, 2007, 30, 1237-1241.	0.6	16
51	Muscarinic and Alpha 1-Adrenergic Receptor Binding Characteristics of Saw Palmetto Extract in Rat Lower Urinary Tract. Urology, 2007, 69, 1216-1220.	0.5	26
52	Binding activities by propiverine and its N-oxide metabolites of L-type calcium channel antagonist receptors in the rat bladder and brain. Life Sciences, 2007, 80, 2454-2460.	2.0	19
53	Urodynamics and bladder muscarinic receptors in rats with cerebral infarction and bladder outlet obstruction. Neuroscience Letters, 2007, 414, 80-84.	1.0	11
54	Comparative Evaluation of Central Muscarinic Receptor Binding Activity by Oxybutynin, Tolterodine and Darifenacin Used to Treat Overactive Bladder. Journal of Urology, 2007, 177, 766-770.	0.2	16

#	Article	IF	CITATIONS
55	Effects of Saw Palmetto Extract on Urodynamic Function and Receptors in the Lower Urinary Tract. Japanese Journal of Complementary and Alternative Medicine, 2007, 4, 41-50.	1.0	2
56	Human Muscarinic Receptor Binding Characteristics of Antimuscarinic Agents to Treat Overactive Bladder. Journal of Urology, 2006, 175, 365-369.	0.2	54
57	In vivo demonstration of M3 muscarinic receptor subtype selectivity of darifenacin in mice. Life Sciences, 2006, 80, 127-132.	2.0	27
58	Comparative Evaluation of Exocrine Muscarinic Receptor Binding Characteristics and Inhibition of Salivation of Solifenacin in Mice. Biological and Pharmaceutical Bulletin, 2006, 29, 1397-1400.	0.6	23
59	Characterization of muscarinic receptor binding and inhibition of salivation after oral administration of tolterodine in mice. European Journal of Pharmacology, 2006, 529, 157-163.	1.7	26
60	Advantages for Transdermal over Oral Oxybutynin to Treat Overactive Bladder: Muscarinic Receptor Binding, Plasma Drug Concentration, and Salivary Secretion. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 1137-1145.	1.3	37
61	Muscarinic receptor binding, plasma concentration and inhibition of salivation after oral administration of a novel antimuscarinic agent, solifenacin succinate in mice. British Journal of Pharmacology, 2005, 145, 219-227.	2.7	48
62	Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Molecular Brain Research, 2005, 133, 6-11.	2.5	73
63	In vivo demonstration of muscarinic receptor binding activity of N-desethyl-oxybutynin, active metabolite of oxybutynin. Life Sciences, 2005, 76, 2445-2456.	2.0	20
64	EFFECTS OF SAW PALMETTO EXTRACT ON MICTURITION REFLEX OF RATS AND ITS AUTONOMIC RECEPTOR BINDING ACTIVITY. Journal of Urology, 2005, 173, 1395-1399.	0.2	30
65	DEMONSTRATION OF BLADDER SELECTIVE MUSCARINIC RECEPTOR BINDING BY INTRAVESICAL OXYBUTYNIN TO TREAT OVERACTIVE BLADDER. Journal of Urology, 2004, 172, 2059-2064.	0.2	34
66	Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sciences, 2004, 75, 2971-2981.	2.0	80
67	In vitro and ex vivo effects of a selective nociceptin/orphanin FQ (N/OFQ) peptide receptor antagonist, CompB, on specific binding of [3 H]N/OFQ and [35 S]GTPγ S in rat brain and spinal cord. British Journal of Pharmacology, 2003, 139, 1462-1468.	2.7	23
68	In vivo receptor binding of benidipine and amlodipine in mesenteric arteries and other tissues of spontaneously hypertensive rats. Life Sciences, 2002, 70, 1999-2011.	2.0	12
69	Muscarinic Receptor Binding Characteristics in Rat Tissues after Oral Administration of Oxybutynin and Propiverine Biological and Pharmaceutical Bulletin, 2001, 24, 491-495.	0.6	15
70	Comparative Study on Pharmacokinetics and in Vivo .ALPHA.1-Adrenoceptor Binding of (3H)Tamsulosin and (3H)Prazosin in Rats Biological and Pharmaceutical Bulletin, 1999, 22, 412-417.	0.6	6
71	Receptor occupancy in myocardium, adrenal cortex, and brain by TH-142177, a novel AT1 receptor antagonist in rats, in relation to its plasma concentration and hypotensive effect. Pharmaceutical Research, 1998, 15, 911-917.	1.7	10
72	In vivo receptor binding of novel α1-adrenoceptor antagonists for treatment of benign prostatic hyperplasia. Life Sciences, 1998, 62, 1585-1589.	2.0	17

#	Article	IF	CITATIONS
73	Ex vivo occupancy by tamsulosin of $\hat{l}\pm 1$ -adrenoceptors in rat tissues in relation to the plasma concentration. Life Sciences, 1998, 63, 2147-2155.	2.0	24
74	RATIONALE FOR THE USE OF a-BLOCKERS IN THE TREATMENT OF BENIGN PROSTATIC HYPERPLASIA (BPH). International Journal of Urology, 1994, 1, 203-211.	0.5	20
75	COMPARATIVE STUDY ON?1-ADRENOCEPTOR ANTAGONIST BINDING IN HUMAN PROSTATE AND AORTA. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 405-411.	0.9	53
76	Alpha1-adrenoceptors in human prostate: Characterization and binding characteristics of alpha1-antagonists. Life Sciences, 1994, 54, 1845-1854.	2.0	54
77	Binding characteristics of naftopidil and α1-adrenoceptor antagonists to prostatic α-adrenoceptors in benign prostatic hypertrophy. Life Sciences, 1992, 50, 127-135.	2.0	32
78	[3 H]Bunazosin, a Novel Selective Radioligand of Alpha 1 Adrenoceptors in Human Prostates. Journal of Urology, 1991, 146, 877-880.	0.2	18
79	Regional adaptation of muscarinic receptors and choline uptake in brain following repeated administration of diisopropylfluorophosphate and atropine. Brain Research, 1983, 268, 315-320.	1.1	82
80	High affinity renal [3H]flunitrazepam binding: Characterization, localization, and alteration in hypertension. Life Sciences, 1981, 28, 991-998.	2.0	102