

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5226753/publications.pdf Version: 2024-02-01

ΥΓΓΙΑΝ

#	Article	IF	CITATIONS
1	UiO-67 metal–organic framework immobilized Fe ³⁺ catalyst for efficient Morita–Baylis–Hillman reaction. New Journal of Chemistry, 2022, 46, 3199-3206.	1.4	9
2	One-pot fabrication of crosslinked nanochains composed of resorcinol–formaldehyde resin hollow nanospheres with tunable shell thickness by using poly(acrylic acid) as template. Materials Today Communications, 2022, 31, 103281.	0.9	1
3	An efficient and recyclable Cu@UiO-67-BPY catalyst for the selective oxidation of alcohols and the epoxidation of olefins. New Journal of Chemistry, 2022, 46, 5839-5847.	1.4	3
4	Multi-field driven thermochromic films and preparation of multi-color patterns. Liquid Crystals, 2022, 49, 1853-1865.	0.9	1
5	The role of nanomesh fibres loaded with fluorescent materials on the electro-optical performance of PDLC devices. Liquid Crystals, 2022, 49, 2037-2050.	0.9	9
6	Photo-induced anti-Markovnikov hydroalkylation of unactivated alkenes employing a dual-component initiator. Chinese Chemical Letters, 2021, 32, 681-684.	4.8	6
7	Synthesis of dendritic porous silica nanospheres coated by polymer layer with well-dispersed ultrasmall Pt nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126407.	2.3	1
8	Chemical Syntheses and Biological Evaluation of CXCL14 and Its Site-Selectively Modified Methionine Sulfoxide-Containing Derivatives. Journal of Organic Chemistry, 2020, 85, 1740-1747.	1.7	8
9	Growth of Cu-BTC MOFs on dendrimer-like porous silica nanospheres for the catalytic aerobic epoxidation of olefins. New Journal of Chemistry, 2020, 44, 14350-14357.	1.4	4
10	Copperâ€doped sulfonic acidâ€functionalized MILâ€101(Cr) metal–organic framework for efficient aerobic oxidation reactions. Applied Organometallic Chemistry, 2020, 34, e5445.	1.7	14
11	Reversible Addition-Fragmentation Chain Transfer Polymerization of 2-Chloroethyl Methacrylate and Post-Polymerization Modification. Macromolecular Research, 2019, 27, 686-692.	1.0	0
12	An efficient Nozaki–Hiyama allenylation promoted by the acid derived MIL-101 MOF. RSC Advances, 2019, 9, 7479-7484.	1.7	6
13	A Perspective on Reversibility in Controlled Polymerization Systems: Recent Progress and New Opportunities. Molecules, 2018, 23, 2870.	1.7	14
14	A facile 2H-chromene dimerization through an ortho-quinone methide intermediate catalyzed by a sulfonyl derived MIL-101 MOF. New Journal of Chemistry, 2018, 42, 12722-12728.	1.4	10
15	Modification of Cu2+ into Zr-based metal–organic framework (MOF) with carboxylic units as an efficient heterogeneous catalyst for aerobic epoxidation of olefins. Molecular Catalysis, 2018, 456, 57-64.	1.0	30
16	Homodimerization of 2 <i>H</i> -chromenes catalyzed by BrÃ,nsted-acid derived UiO-66 MOFs. Catalysis Science and Technology, 2018, 8, 3406-3413.	2.1	13
17	Direct synthesis of Fe(III) immobilized Zrâ€based metal–organic framework for aerobic oxidation reaction. Applied Organometallic Chemistry, 2017, 31, e3862.	1.7	10
18	A novel modified MIL-101-NH2 ligand for Cul-catalyzed and air promoted oxidation of secondary alcohols. RSC Advances, 2017, 7, 22353-22359.	1.7	16

Yi Luan

#	Article	IF	CITATIONS
19	Picolinoyl functionalized MOF ligands for an air-promoted secondary alcohol oxidation with CuBr. New Journal of Chemistry, 2017, 41, 4400-4405.	1.4	11
20	Recent Synthetic Advances on π-Extended Carbon Nanohoops. Synlett, 2017, 28, 1383-1388.	1.0	18
21	Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability. Journal of Materials Chemistry A, 2017, 5, 21560-21569.	5.2	53
22	Facile synthesis of Cu ₃ (BTC) ₂ /cellulose acetate mixed matrix membranes and their catalytic applications in continuous flow process. New Journal of Chemistry, 2017, 41, 9123-9129.	1.4	15
23	An Fe ₃ O ₄ @P4VP@FeCl ₃ core–shell heterogeneous catalyst for aerobic oxidation of alcohols and benzylic oxidation reaction. RSC Advances, 2017, 7, 51142-51150.	1.7	16
24	Development of a BrÃ,nsted acid Al–MIL-53 metal–organic framework catalyst and its application in [4 + 2] cycloadditions. RSC Advances, 2017, 7, 34591-34597.	1.7	20
25	The synthesis of metal–organic framework Alâ€MILâ€53â€derived BrÃnsted acid catalyst and its application in the Mannich reaction. Applied Organometallic Chemistry, 2017, 31, e3569.	1.7	14
26	Development of a novel BrÃ,nsted acid UiO-66 metal–organic framework catalyst by postsynthetic modification and its application in catalysis. RSC Advances, 2016, 6, 67226-67231.	1.7	30
27	Introduction of an organic acid phase changing material into metal–organic frameworks and the study of its thermal properties. Journal of Materials Chemistry A, 2016, 4, 7641-7649.	5.2	132
28	A Metalâ€Organic Framework BrÃ,nsted Acid Catalyst: Synthesis, Characterization and Application to the Generation of Quinone Methides for [4+2] Cycloadditions. Advanced Synthesis and Catalysis, 2016, 358, 2604-2611.	2.1	23
29	The synthesis of a bifunctional copper metal organic framework and its application in the aerobic oxidation/Knoevenagel condensation sequential reaction. Dalton Transactions, 2016, 45, 13917-13924.	1.6	76
30	Fabrication of hierarchical composite microspheres of copper-doped Fe ₃ O ₄ @P4VP@ZIF-8 and their application in aerobic oxidation. New Journal of Chemistry, 2016, 40, 10127-10135.	1.4	21
31	Design and Synthesis of an Au@MILâ€53(NH ₂) Catalyst for a Oneâ€Pot Aerobic Oxidation/Knoevenagel Condensation Reaction. European Journal of Inorganic Chemistry, 2015, 2015, 5099-5105.	1.0	36
32	Synthesis of a flower-like Zr-based metal–organic framework and study of its catalytic performance in the Mannich reaction. RSC Advances, 2015, 5, 19273-19278.	1.7	61
33	Highly efficient sulfonated-polystyrene–Cu(II)@Cu ₃ (BTC) ₂ core–shell microsphere catalysts for base-free aerobic oxidation of alcohols. Journal of Materials Chemistry A, 2015, 3, 4266-4273.	5.2	41
34	Synthesis of UiO-66-NH2 derived heterogeneous copper (II) catalyst and study of its application in the selective aerobic oxidation of alcohols. Journal of Molecular Catalysis A, 2015, 407, 53-59.	4.8	98
35	A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. Journal of Materials Chemistry A, 2015, 3, 17320-17331.	5.2	211
36	Enantioselective Synthesis of 1,2-Dihydronaphthalene-1-carbaldehydes by Addition of Boronates to Isochromene Acetals Catalyzed by Tartaric Acid. Journal of the American Chemical Society, 2015, 137, 3233-3236.	6.6	57

Yi Luan

#	Article	IF	CITATIONS
37	Nanoscaled Copper Metal–Organic Framework (MOF) Based on Carboxylate Ligands as an Efficient Heterogeneous Catalyst for Aerobic Epoxidation of Olefins and Oxidation of Benzylic and Allylic Alcohols. Chemistry - A European Journal, 2015, 21, 1589-1597.	1.7	116
38	Ultrathin mesoporous NiCo ₂ O ₄ nanosheets as an efficient and reusable catalyst for benzylic oxidation. RSC Advances, 2015, 5, 2405-2410.	1.7	12
39	Hierarchical PS/PANI nanostructure supported Cu(<scp>ii</scp>) complexes: facile synthesis and study of catalytic applications in aerobic oxidation. RSC Advances, 2014, 4, 55028-55035.	1.7	31
40	Merging metal–organic framework catalysis with organocatalysis: A thiourea functionalized heterogeneous catalyst at the nanoscale. Catalysis Science and Technology, 2014, 4, 925.	2.1	77
41	A fast synthesis of hierarchical yolk–shell copper hydroxysulfates at room temperature with adjustable sizes. CrystEngComm, 2014, 16, 2520.	1.3	14
42	Development of a SO ₃ Hâ€Functionalized UiOâ€66 Metal–Organic Framework by Postsynthetic Modification and Studies of Its Catalytic Activities. European Journal of Inorganic Chemistry, 2014, 2014, 4268-4272.	1.0	54
43	The development of a novel HAuCl4@MOF catalyst and its catalytic application in the formation of dihydrochalcones. RSC Advances, 2014, 4, 34199.	1.7	12
44	Synthesis of a Fe ₃ O ₄ –CuO@meso-SiO ₂ nanostructure as a magnetically recyclable and efficient catalyst for styrene epoxidation. Catalysis Science and Technology, 2014, 4, 3082-3089.	2.1	41
45	Synthesis of an amino-functionalized metal–organic framework at a nanoscale level for gold nanoparticle deposition and catalysis. Journal of Materials Chemistry A, 2014, 2, 20588-20596.	5.2	130
46	Synthesis of hierarchical Polystyrene/Polyaniline@Au nanostructures of different surface states and studies of their catalytic properties. Science China Chemistry, 2014, 57, 1211-1217.	4.2	15
47	Diastereoselective Three-Component Synthesis of β-Amino Carbonyl Compounds Using Diazo Compounds, Boranes, and Acyl Imines under Catalyst-Free Conditions. Journal of Organic Chemistry, 2014, 79, 4694-4698.	1.7	18
48	Enantioselective Addition of Boronates to <i>o</i> -Quinone Methides Catalyzed by Chiral Biphenols. Journal of the American Chemical Society, 2012, 134, 19965-19968.	6.6	189
49	Multicomponent Mannich Reactions with Boron Enolates Derived from Diazo Esters and 9-BBN. Organic Letters, 2011, 13, 2510-2513.	2.4	30
50	Iron-Catalyzed Rearrangements and Cycloaddition Reactions of 2 <i>H</i> -Chromenes. Organic Letters, 2011, 13, 6480-6483.	2.4	38
51	The synthesis of a copper metalâ€organic framework Cu 3 TDPAT and its application in a Moritaâ€Baylisâ€Hillman (MBH) reaction. Applied Organometallic Chemistry, 0, , .	1.7	1
52	Dual-field responsive polymer-dispersed liquid crystal films with polymer spacer columns and fluorescent properties. Liquid Crystals, 0, , 1-14.	0.9	1