Eric W Wolff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5226705/publications.pdf Version: 2024-02-01

	10979	9854
23,638	71	141
citations	h-index	g-index
332	332	14191
docs citations	times ranked	citing authors
	citations 332	23,638 71 citations h-index 332 332

FRIC WWOLFE

#	Article	IF	CITATIONS
1	Eight glacial cycles from an Antarctic ice core. Nature, 2004, 429, 623-628.	13.7	2,015
2	Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science, 2007, 317, 793-796.	6.0	1,880
3	One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 2006, 444, 195-198.	13.7	1,111
4	Halogens and their role in polar boundary-layer ozone depletion. Atmospheric Chemistry and Physics, 2007, 7, 4375-4418.	1.9	593
5	High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene, 2009, 19, 3-49.	0.9	588
6	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	13.7	565
7	An overview of snow photochemistry: evidence, mechanisms and impacts. Atmospheric Chemistry and Physics, 2007, 7, 4329-4373.	1.9	554
8	Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature, 2006, 440, 491-496.	13.7	482
9	Millennial-scale variability during the last glacial: The ice core record. Quaternary Science Reviews, 2010, 29, 2828-2838.	1.4	440
10	The EDC3 chronology for the EPICA Dome C ice core. Climate of the Past, 2007, 3, 485-497.	1.3	396
11	The 8.2ka event from Greenland ice cores. Quaternary Science Reviews, 2007, 26, 70-81.	1.4	386
12	The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Climate of the Past, 2013, 9, 1733-1748.	1.3	362
13	History of sea ice in the Arctic. Quaternary Science Reviews, 2010, 29, 1757-1778.	1.4	343
14	An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Climate of the Past, 2013, 9, 1715-1731.	1.3	324
15	Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochemical Cycles, 2016, 30, 1356-1370.	1.9	317
16	800,000 Years of Abrupt Climate Variability. Science, 2011, 334, 347-351.	6.0	310
17	Sea-salt aerosol in coastal Antarctic regions. Journal of Geophysical Research, 1998, 103, 10961-10974.	3.3	256
18	Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis. Quaternary Science Reviews, 2013, 68, 76-95.	1.4	238

#	Article	IF	CITATIONS
19	Frost flowers: Implications for tropospheric chemistry and ice core interpretation. Journal of Geophysical Research, 2002, 107, AAC 4-1-AAC 4-15.	3.3	234
20	Temperature and precipitation history of the Arctic. Quaternary Science Reviews, 2010, 29, 1679-1715.	1.4	226
21	Speciation and rate of photochemical NO and NO2production in Antarctic snow. Geophysical Research Letters, 2000, 27, 345-348.	1.5	202
22	Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: Sources, transport, and deposition. Reviews of Geophysics, 2007, 45, .	9.0	200
23	Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth and Planetary Science Letters, 2007, 260, 340-354.	1.8	193
24	Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate of the Past, 2011, 7, 361-380.	1.3	193
25	Sulfur-containing species (sulfate and methanesulfonate) in coastal Antarctic aerosol and precipitation. Journal of Geophysical Research, 1998, 103, 10975-10990.	3.3	192
26	Sulphuric acid at grain boundaries in Antarctic ice. Nature, 1988, 331, 247-249.	13.7	188
27	Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quaternary Science Reviews, 2010, 29, 285-295.	1.4	183
28	Measurements of NOxemissions from the Antarctic snowpack. Geophysical Research Letters, 2001, 28, 1499-1502.	1.5	167
29	Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	5.4	166
30	Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nature Geoscience, 2013, 6, 404-411.	5.4	154
31	Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth and Planetary Science Letters, 2002, 200, 207-222.	1.8	149
32	Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quaternary Science Reviews, 2014, 103, 116-133.	1.4	146
33	"EDML1": a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years. Climate of the Past, 2007, 3, 475-484.	1.3	143
34	Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate. Geophysical Research Letters, 2002, 29, 24-1-24-4.	1.5	141
35	Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. Journal of Geophysical Research, 2012, 117, .	3.3	141
36	Frost flowers as a source of fractionated sea salt aerosol in the polar regions. Geophysical Research Letters, 2000, 27, 3469-3472.	1.5	140

#	Article	IF	CITATIONS
37	An ice core indicator of Antarctic sea ice production?. Geophysical Research Letters, 2003, 30, .	1.5	136
38	Evidence for warmer interglacials in East Antarctic ice cores. Nature, 2009, 462, 342-345.	13.7	136
39	Factors controlling nitrate in ice cores: Evidence from the Dome C deep ice core. Journal of Geophysical Research, 2000, 105, 20565-20572.	3.3	133
40	Nitrate in Greenland and Antarctic ice cores: a detailed description of post-depositional processes. Annals of Glaciology, 2002, 35, 209-216.	2.8	128
41	The record of global pollution in polar snow and ice. Nature, 1985, 313, 535-540.	13.7	123
42	Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core. Climate of the Past, 2013, 9, 2489-2505.	1.3	123
43	Southern Hemisphere westerly wind changes during the Last Glacial Maximum: model-data comparison. Quaternary Science Reviews, 2013, 64, 104-120.	1.4	121
44	Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station. Journal of Geophysical Research, 1998, 103, 11033-11041.	3.3	118
45	Timescales for dust variability in the Greenland Ice Core Project (GRIP) ice core in the last 100,000 years. Journal of Geophysical Research, 1999, 104, 31043-31052.	3.3	117
46	Subsurface ice as a microbial habitat. Geology, 2006, 34, 169.	2.0	117
47	The role of Southern Ocean processes in orbital and millennial CO2 variations – A synthesis. Quaternary Science Reviews, 2010, 29, 193-205.	1.4	115
48	Antarctic snow record of southern hemisphere lead pollution. Geophysical Research Letters, 1994, 21, 781-784.	1.5	113
49	A tentative chronology for the EPICA Dome Concordia Ice Core. Geophysical Research Letters, 2001, 28, 4243-4246.	1.5	113
50	Atmospheric near-surface nitrate at coastal Antarctic sites. Journal of Geophysical Research, 1998, 103, 11007-11020.	3.3	111
51	A review of sea ice proxy information from polar ice cores. Quaternary Science Reviews, 2013, 79, 168-183.	1.4	110
52	Glacial terminations as southern warmings without northern control. Nature Geoscience, 2009, 2, 206-209.	5.4	109
53	A simple rule to determine which insolation cycles lead to interglacials. Nature, 2017, 542, 427-432.	13.7	108

#	Article	IF	CITATIONS
55	BrO, blizzards, and drivers of polar tropospheric ozone depletion events. Atmospheric Chemistry and Physics, 2009, 9, 4639-4652.	1.9	98
56	Henry's law constants for polychlorinated biphenyls: experimental determination and structure-property relationships. Environmental Science & Technology, 1990, 24, 1751-1754.	4.6	96
57	A year-long record of size-segregated aerosol composition at Halley, Antarctica. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	94
58	Antarctic snow record of cadmium, copper, and zinc content during the twentieth century. Atmospheric Environment, 1999, 33, 1535-1541.	1.9	92
59	Snow chemistry across Antarctica. Annals of Glaciology, 2005, 41, 167-179.	2.8	90
60	DMS and MSA measurements in the Antarctic Boundary Layer: impact of BrO on MSA production. Atmospheric Chemistry and Physics, 2008, 8, 2985-2997.	1.9	87
61	Diffusion and location of hydrochloric acid in ice: Implications for polar stratospheric clouds and ozone depletion. Geophysical Research Letters, 1989, 16, 487-490.	1.5	85
62	The Carrington event not observed in most ice core nitrate records. Geophysical Research Letters, 2012, 39, .	1.5	85
63	Flow law for ice in polar ice sheets. Nature, 1985, 314, 255-257.	13.7	84
64	The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements. Atmospheric Chemistry and Physics, 2008, 8, 5627-5634.	1.9	84
65	The 8200yr BP cold event in stable isotope records from the North Atlantic region. Global and Planetary Change, 2011, 79, 288-302.	1.6	84
66	One hundred fifty–year record of lead isotopes in Antarctic snow from Coats Land. Geochimica Et Cosmochimica Acta, 2003, 67, 693-708.	1.6	82
67	Sea ice in the paleoclimate system: the challenge of reconstructing sea ice from proxies – an introduction. Quaternary Science Reviews, 2013, 79, 1-8.	1.4	82
68	Proxies and Measurement Techniques for Mineral Dust in Antarctic Ice Cores. Environmental Science & Technology, 2008, 42, 5675-5681.	4.6	81
69	Oxidized nitrogen chemistry and speciation in the Antarctic troposphere. Journal of Geophysical Research, 1999, 104, 21355-21366.	3.3	80
70	A twoâ€phase model of electrical conduction in polar ice sheets. Journal of Geophysical Research, 1984, 89, 9433-9438.	3.3	79
71	Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates. Journal of Geophysical Research, 2006, 111, .	3.3	78
72	Postdepositional change in snowpack nitrate from observation of year-round near-surface snow in coastal Antarctica. Journal of Geophysical Research, 1998, 103, 11021-11031.	3.3	77

#	Article	IF	CITATIONS
73	Methods for biogeochemical studies of sea ice: The state of the art, caveats, and recommendations. Elementa, 2015, 3, .	1.1	77
74	What controls photochemical NO and NO2production from Antarctic snow? Laboratory investigation assessing the wavelength and temperature dependence. Journal of Geophysical Research, 2003, 108, .	3.3	76
75	Large-scale features of Last Interglacial climate: results from evaluating the <i>lig127k</i> simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4). Climate of the Past, 2021, 17, 63-94.	1.3	76
76	The chemical basis for the electrical stratigraphy of ice. Journal of Geophysical Research, 1992, 97, 1887-1896.	3.3	74
77	Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nature Communications, 2018, 9, 1476.	5.8	74
78	Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching. Climate of the Past, 2007, 3, 367-374.	1.3	73
79	Chemistry of the Antarctic Boundary Layer and the Interface with Snow: an overview of the CHABLIS campaign. Atmospheric Chemistry and Physics, 2008, 8, 3789-3803.	1.9	73
80	Can we predict the duration of an interglacial?. Climate of the Past, 2012, 8, 1473-1485.	1.3	72
81	Sea-ice-free Arctic during the Last Interglacial supports fast future loss. Nature Climate Change, 2020, 10, 928-932.	8.1	71
82	Boreal fire records in Northern Hemisphere ice cores: a review. Climate of the Past, 2016, 12, 2033-2059.	1.3	70
83	Multiple sources supply eolian mineral dust to the Atlantic sector of coastal Antarctica: Evidence from recent snow layers at the top of Berkner Island ice sheet. Earth and Planetary Science Letters, 2010, 291, 138-148.	1.8	69
84	Signals of atmospheric pollution in polar snow and ice. Antarctic Science, 1990, 2, 189-205.	0.5	67
85	Causes of seasonal and daily variations in aerosol sea-salt concentrations at a coastal Antarctic station. Atmospheric Environment, 1998, 32, 3669-3677.	1.9	67
86	Modelling photochemical NOXproduction and nitrate loss in the upper snowpack of Antarctica. Geophysical Research Letters, 2002, 29, 5-1-5-4.	1.5	67
87	Interhemispheric coupling, the West Antarctic Ice Sheet and warm Antarctic interglacials. Climate of the Past, 2010, 6, 431-443.	1.3	67
88	Evidence for winter/spring denitrification of the stratosphere in the nitrate record of Antarctic firn cores. Journal of Geophysical Research, 1993, 98, 5213-5220.	3.3	66
89	Ultrasensitive determination of heavy metals at the sub-picogram per gram level in ultraclean Antarctic snow samples by inductively coupled plasma sector field mass spectrometry. Analytica Chimica Acta, 2001, 450, 193-205.	2.6	65
90	Spatial variability of the major chemistry of the Antarctic ice sheet. Annals of Glaciology, 1994, 20, 440-447.	2.8	64

#	Article	IF	CITATIONS
91	Ice core evidence for the extent of past atmospheric CO2change due to iron fertilisation. Geophysical Research Letters, 2004, 31, .	1.5	63
92	Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions. Quaternary Science Reviews, 2017, 168, 137-150.	1.4	63
93	Relationship between chemistry of air, fresh snow and firn cores for aerosol species in coastal Antarctica. Journal of Geophysical Research, 1998, 103, 11057-11070.	3.3	62
94	Synchronous timing of abrupt climate changes during the last glacial period. Science, 2020, 369, 963-969.	6.0	62
95	Vertical structure of Antarctic tropospheric ozone depletion events: characteristics and broader implications. Atmospheric Chemistry and Physics, 2010, 10, 7775-7794.	1.9	61
96	First direct observation of sea salt aerosol production from blowing snow above sea ice. Atmospheric Chemistry and Physics, 2020, 20, 2549-2578.	1.9	61
97	Heavy metal and sulphur emissions to the atmosphere from human activities in Antarctica. Atmospheric Environment, 1989, 23, 1669-1675.	1.1	60
98	Antarctic isotopic thermometer during a CO ₂ forced warming event. Journal of Geophysical Research, 2008, 113, .	3.3	60
99	Ice core records as sea ice proxies: An evaluation from the Weddell Sea region of Antarctica. Journal of Geophysical Research, 2007, 112, .	3.3	59
100	Frost flowers in the laboratory: Growth, characteristics, aerosol, and the underlying sea ice. Journal of Geophysical Research, 2011, 116, .	3.3	59
101	The Location of Impurities in Antarctic Ice. Annals of Glaciology, 1988, 11, 194-197.	2.8	58
102	Holocene electrical and chemical measurements from the EPICA–Dome C ice core. Annals of Glaciology, 2000, 30, 20-26.	2.8	57
103	Limited dechlorination of sea-salt aerosols during the last glacial period: Evidence from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core. Journal of Geophysical Research, 2003, 108, .	3.3	57
104	Ice sheets and nitrogen. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130127.	1.8	57
105	The Southern Hemisphere at glacial terminations: insights from the Dome C ice core. Climate of the Past, 2008, 4, 345-356.	1.3	57
106	A role for newly forming sea ice in springtime polar tropospheric ozone loss? Observational evidence from Halley station, Antarctica. Journal of Geophysical Research, 2006, 111, .	3.3	56
107	Factors Controlling the Electrical Conductivity of Ice from the Polar RegionsA Summary. Journal of Physical Chemistry B, 1997, 101, 6090-6094.	1.2	55
108	Distribution of soluble impurities in cold glacial ice. Journal of Glaciology, 2004, 50, 311-324.	1.1	55

#	Article	IF	CITATIONS
109	The transition from the Last Glacial Period in inland and near-coastal Antarctica. Geophysical Research Letters, 2000, 27, 2673-2676.	1.5	53
110	Millennial changes in North American wildfire and soil activity over the last glacial cycle. Nature Geoscience, 2015, 8, 723-727.	5.4	53
111	The multi-seasonal NO _y budget in coastal Antarctica and its link with surface snow and ice core nitrate: results from the CHABLIS campaign. Atmospheric Chemistry and Physics, 2011, 11, 9271-9285.	1.9	52
112	The diurnal variability of atmospheric nitrogen oxides (NO and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 627 Td (NC stability and snow emissions. Atmospheric Chemistry and Physics, 2013, 13, 3045-3062.) <s 1.9</s 	ub>2 52
113	Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean. Quaternary Science Reviews, 2010, 29, 313-323.	1.4	50
114	Long-term changes in the acid and salt concentrations of the Greenland Ice Core Project ice core from from electrical stratigraphy. Journal of Geophysical Research, 1995, 100, 16249.	3.3	49
115	SEM studies of the morphology and chemistry of polar ice. Microscopy Research and Technique, 2003, 62, 62-69.	1.2	49
116	Potential and limitations of marine and ice core sea ice proxies: an example from the Indian Ocean sector. Quaternary Science Reviews, 2010, 29, 296-302.	1.4	49
117	Climatic implications of background acidity and other chemistry derived from electrical studies of the Greenland Ice Core Project ice core. Journal of Geophysical Research, 1997, 102, 26325-26332.	3.3	48
118	Comparison of analytical methods used for measuring major ions in the EPICA Dome C (Antarctica) ice core. Annals of Glaciology, 2002, 35, 299-305.	2.8	48
119	Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition. Science, 2020, 367, 1235-1239.	6.0	48
120	Evolution of chemical peak shapes in the Dome C, Antarctica, ice core. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	46
121	Frost flower surface area and chemistry as a function of salinity and temperature. Journal of Geophysical Research, 2009, 114, .	3.3	46
122	Coastal Antarctic aerosol and snowfall chemistry. Journal of Geophysical Research, 1998, 103, 10927-10934.	3.3	45
123	Antarctic aerosol and snowfall chemistry: implications for deep Antarctic ice-core chemistry. Annals of Glaciology, 1999, 29, 66-72.	2.8	45
124	Sea salt as an ice core proxy for past sea ice extent: A processâ€based model study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5737-5756.	1.2	45
125	Stratigraphic correlations between the European Project for Ice Coring in Antarctica (EPICA) Dome C and Vostok ice cores showing the relative variations of snow accumulation over the past 45 kyr. Journal of Geophysical Research, 2004, 109, .	3.3	43
126	Greenhouse gases in the Earth system: a palaeoclimate perspective. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2133-2147.	1.6	43

#	Article	IF	CITATIONS
127	Volcanic synchronisation between the EPICA Dome C and Vostok ice cores (Antarctica) 0–145 kyr BP. Climate of the Past, 2012, 8, 1031-1045.	1.3	43
128	A 308 year record of climate variability in West Antarctica. Geophysical Research Letters, 2013, 40, 5492-5496.	1.5	43
129	Warm climate isotopic simulations: what do we learn about interglacial signals in Greenland ice cores?. Quaternary Science Reviews, 2013, 67, 59-80.	1.4	43
130	Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum. Nature Communications, 2015, 6, 7850.	5.8	43
131	Preconcentration of cadmium, copper, lead, and zinc in water at the 10-12 g/g level by adsorption onto tungsten wire followed by flameless atomic absorption spectrometry. Analytical Chemistry, 1981, 53, 1566-1570.	3.2	42
132	Comparison of Holocene electrical records from Dome C and Vostok, Antarctica. Annals of Glaciology, 1999, 29, 89-93.	2.8	42
133	Climate spectrum estimation in the presence of timescale errors. Nonlinear Processes in Geophysics, 2009, 16, 43-56.	0.6	42
134	Closer to a True Value for Heavy Metal Concentrations in Recent Antarctic Snow by Improved Contamination Control. Annals of Glaciology, 1985, 7, 61-69.	2.8	41
135	Direct determination of mercury at the sub-picogram per gram level in polar snow and ice by ICP-SFMS. Journal of Analytical Atomic Spectrometry, 2004, 19, 823.	1.6	41
136	Anatomy of a Dansgaardâ€Oeschger warming transition: Highâ€resolution analysis of the North Greenland Ice Core Project ice core. Journal of Geophysical Research, 2009, 114, .	3.3	41
137	Spatial variability of the major chemistry of the Antarctic ice sheet. Annals of Glaciology, 1994, 20, 440-447.	2.8	40
138	Electrical response of the Summit-Greenland ice core to ammonium, sulphuric acid, and hydrochloric acid. Geophysical Research Letters, 1994, 21, 565-568.	1.5	39
139	Concentrations of Cadmium, Copper, Lead and Zinc in Snow from Near Dye 3 in South Greenland. Annals of Glaciology, 1988, 10, 193-197.	2.8	38
140	Observations of polar ice from the Holocene and the glacial period using the scanning electron microscope. Annals of Glaciology, 2002, 35, 559-566.	2.8	38
141	Sea ice as a source of sea salt aerosol to Greenland ice cores: a model-based study. Atmospheric Chemistry and Physics, 2017, 17, 9417-9433.	1.9	38
142	A technique for the examination of polar ice using the scanning electron microscope. Journal of Microscopy, 2002, 205, 118-124.	0.8	37
143	An analysis of the oxidation potential of the South Pole boundary layer and the influence of stratospheric ozone depletion. Journal of Geophysical Research, 2003, 108, .	3.3	37
144	Year-round records of bulk and size-segregated aerosol composition in central Antarctica (Concordia site) – Part 1: Fractionation of sea-salt particles. Atmospheric Chemistry and Physics, 2017, 17, 14039-14054.	1.9	37

#	Article	IF	CITATIONS
145	Reactions on sulphuric acid aerosol and on polar stratospheric clouds in the Antarctic stratosphere. Geophysical Research Letters, 1991, 18, 1007-1010.	1.5	36
146	Reconciling the changes in atmospheric methane sources and sinks between the Last Glacial Maximum and the pre-industrial era. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	36
147	Summertime NO _x measurements during the CHABLIS campaign: can source and sink estimates unravel observed diurnal cycles?. Atmospheric Chemistry and Physics, 2012, 12, 989-1002.	1.9	36
148	The local deposition of heavy metal emissions from point sources in Antarctica. Atmospheric Environment Part A General Topics, 1993, 27, 1833-1841.	1.3	33
149	Methane and nitrous oxide in the ice core record. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1775-1792.	1.6	33
150	Sea salt aerosol production via sublimating wind-blown saline snow particles over sea ice: parameterizations and relevant microphysical mechanisms. Atmospheric Chemistry and Physics, 2019, 19, 8407-8424.	1.9	33
151	Investigating possible causes of the observed diurnal variability in Antarctic NOy. Geophysical Research Letters, 1999, 26, 2853-2856.	1.5	32
152	Short-term variations in the occurrence of heavy metals in Antarctic snow from Coats Land since the 1920s. Science of the Total Environment, 2002, 300, 129-142.	3.9	32
153	Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core. Cryosphere, 2015, 9, 1633-1648.	1.5	32
154	Signal variability in replicate ice cores. Journal of Glaciology, 2005, 51, 462-468.	1.1	31
155	Seasonal input of heavy metals to Antarctic snow. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 351-357.	0.8	30
156	Location, Movement and Reactions of Impurities in Solid Ice. , 1996, , 541-560.		30
157	Automated ice-core layer-counting with strong univariate signals. Climate of the Past, 2012, 8, 1869-1879.	1.3	28
158	The Midâ€Brunhes Event and West Antarctic ice sheet stability. Journal of Quaternary Science, 2011, 26, 474-477.	1.1	27
159	Volcanic synchronization of Dome Fuji and Dome C Antarctic deep ice cores over the past 216 kyr. Climate of the Past, 2015, 11, 1395-1416.	1.3	27
160	Is a periglacial biota responsible for enhanced dielectric response in basal ice from the Greenland Ice Core Project ice core?. Journal of Geophysical Research, 1998, 103, 18885-18894.	3.3	26
161	The penultimate deglaciation: protocol for Paleoclimate Modelling Intercomparison Project (PMIP) phase 4 transient numerical simulations between 140 and 127 ka, version 1.0. Geoscientific Model Development, 2019, 12, 3649-3685.	1.3	26
162	Recent Variations in Heavy Metal Concentrations in Firn and Air From the Antarctic Peninsula. Annals of Glaciology, 1982, 3, 255-259.	2.8	25

#	Article	IF	CITATIONS
163	Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice. Quaternary Science Reviews, 2018, 183, 1-22.	1.4	25
164	Climate of the last million years: new insights from EPICA and other records. Quaternary Science Reviews, 2010, 29, 1-7.	1.4	24
165	The Spatial Structure of the 128Âka Antarctic Sea Ice Minimum. Geophysical Research Letters, 2017, 44, 11,129.	1.5	24
166	Measurement and interpretation of gas phase formaldehyde concentrations obtained during the CHABLIS campaign in coastal Antarctica. Atmospheric Chemistry and Physics, 2008, 8, 4085-4093.	1.9	23
167	Spatial variability of the major chemistry of the Antarctic ice sheet. Annals of Glaciology, 1994, 20, 440-447.	2.8	23
168	Forward Modeling of the Internal Layers in Radio Echo Sounding Using Electrical and Density Measurements from Ice Cores. Journal of Physical Chemistry B, 1997, 101, 6201-6204.	1.2	22
169	Modeling the radio echo reflections inside the ice sheet at Summit, Greenland. Journal of Geophysical Research, 2002, 107, EPM 6-1.	3.3	22
170	Modelling the liquid-water vein system within polar ice sheets as a potential microbial habitat. Earth and Planetary Science Letters, 2012, 333-334, 238-249.	1.8	22
171	Impact of meltwater on high-latitude early Last Interglacial climate. Climate of the Past, 2016, 12, 1919-1932.	1.3	22
172	Interpreting natural climate signals in ice cores. Eos, 1995, 76, 477-477.	0.1	20
173	Aerosol Profiling Using a Tethered Balloon in Coastal Antarctica. Journal of Atmospheric and Oceanic Technology, 2002, 19, 1978-1985.	0.5	20
174	Rapid climate change: lessons from the recent geological past. Global and Planetary Change, 2011, 79, 157-162.	1.6	20
175	Controls on the tropospheric oxidizing capacity during an idealized Dansgaardâ€Oeschger event, and their implications for the rapid rises in atmospheric methane during the last glacial period. Geophysical Research Letters, 2012, 39, .	1.5	19
176	Seasonal input of heavy metals to Antarctic snow. Tellus, Series B: Chemical and Physical Meteorology, 2022, 44, 351.	0.8	19
177	The influence of global and local atmospheric pollution on the chemistry of Antarctic snow and ice. Marine Pollution Bulletin, 1992, 25, 274-280.	2.3	18
178	A reinterpretation of sea-salt records in Greenland and Antarctic ice cores?. Annals of Glaciology, 2004, 39, 276-282.	2.8	18
179	Modeling past atmospheric CO2: Results of a challenge. Eos, 2005, 86, 341.	0.1	18
180	The role of atomic chlorine in glacial-interglacial changes in the carbon-13 content of atmospheric methane. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	18

#	Article	IF	CITATIONS
181	Bayesian Glaciological Modelling to quantify uncertainties in ice core chronologies. Quaternary Science Reviews, 2011, 30, 2961-2975.	1.4	18
182	Where might we find evidence of a Last Interglacial West Antarctic Ice Sheet collapse in Antarctic ice core records?. Global and Planetary Change, 2012, 88-89, 64-75.	1.6	18
183	A network of autonomous surface ozone monitors in Antarctica: technical description and first results. Atmospheric Measurement Techniques, 2011, 4, 645-658.	1.2	17
184	Chemical signals of past climate and environment from polar ice cores and firn air. Chemical Society Reviews, 2012, 41, 6247.	18.7	17
185	Sea Ice Versus Storms: What Controls Sea Salt in Arctic Ice Cores?. Geophysical Research Letters, 2018, 45, 5572-5580.	1.5	17
186	Preconcentration method for electrothermal atomic absorption spectrometric analysis for heavy metals in Antarctic snow at sub ng kgâ~1 levels. Analytica Chimica Acta, 1992, 258, 229-236.	2.6	16
187	Ammonium and potassium in snow around an emperor penguin colony. Antarctic Science, 2000, 12, 154-159.	0.5	16
188	Understanding the past-climate history from Antarctica. Antarctic Science, 2005, 17, 487-495.	0.5	16
189	Combining ice core records and ice sheet models to explore the evolution of the East Antarctic Ice sheet during the Last Interglacial period. Global and Planetary Change, 2013, 100, 278-290.	1.6	16
190	Effect of density on electrical conductivity of chemically laden polar ice. Journal of Geophysical Research, 2002, 107, ESE 1-1.	3.3	15
191	Sensitivity of chemical species to climatic changes in the last 45 kyr as revealed by high-resolution Dome C (East Antarctica) ice-core analysis. Annals of Claciology, 2004, 39, 457-466.	2.8	14
192	The EPICA deep ice cores: first results and perspectives. Annals of Glaciology, 2004, 39, 93-100.	2.8	14
193	Searching for the Oldest Ice. Eos, 2010, 91, 357-358.	0.1	14
194	Atmospheric decadal variability from high-resolution Dome C ice core records of aerosol constituents beyond the Last Interglacial. Quaternary Science Reviews, 2010, 29, 324-337.	1.4	14
195	In search of an ice core signal to differentiate between source-driven and sink-driven changes in atmospheric methane. Journal of Geophysical Research, 2011, 116, .	3.3	14
196	Ice drilling on Skytrain Ice Rise and Sherman Island, Antarctica. Annals of Glaciology, 2021, 62, 311-323.	2.8	14
197	Continuous flow analysis methods for sodium, magnesium and calcium detection in the Skytrain ice core. Journal of Claciology, 2022, 68, 90-100.	1.1	14
198	New insights into the  â^¼â€‰74 ka Toba eruption from sulfur isotopes of polar ice cores. Climate of t 2021, 17, 2119-2137.	he Past, 1.3	14

12

#	Article	IF	CITATIONS
199	A 44 kyr paleoroughness record of the Antarctic surface. Journal of Geophysical Research, 2006, 111, .	3.3	13
200	The spatial scale of ozone depletion events derived from an autonomous surface ozone network in coastal Antarctica. Atmospheric Chemistry and Physics, 2013, 13, 1457-1467.	1.9	13
201	Ice Sheets and the Anthropocene. Geological Society Special Publication, 2014, 395, 255-263.	0.8	13
202	HO ₂ NO ₂ and HNO ₃ in the coastal Antarctic winter night: a "lab-in-the-field" experiment. Atmospheric Chemistry and Physics, 2014, 14, 11843-11851.	1.9	12
203	Comment on "Low time resolution analysis of polar ice cores cannot detect impulsive nitrate events― by D.F. Smart et al Journal of Geophysical Research: Space Physics, 2016, 121, 1920-1924.	0.8	12
204	Challenges and research priorities to understand interactions between climate, ice sheets and global mean sea level during past interglacials. Quaternary Science Reviews, 2019, 219, 308-311.	1.4	12
205	Organic Compounds in a Subâ€Antarctic Ice Core: A Potential Suite of Sea Ice Markers. Geophysical Research Letters, 2019, 46, 9930-9939.	1.5	12
206	Concentrations of Cadmium, Copper, Lead and Zinc in Snow from Near Dye 3 in South Greenland. Annals of Glaciology, 1988, 10, 193-197.	2.8	12
207	Implications of the form of the Flow Law for Vertical Velocity and Age–Depth Profiles in Polar Ice. Journal of Glaciology, 1986, 32, 366-370.	1.1	11
208	Exploration of a simple model for ice ages. GEM - International Journal on Geomathematics, 2013, 4, 227-297.	0.7	11
209	Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art. Biogeosciences, 2013, 10, 8305-8328.	1.3	11
210	Implications of the form of the Flow Law for Vertical Velocity and Age–Depth Profiles in Polar Ice. Journal of Glaciology, 1986, 32, 366-370.	1.1	10
211	Capture and scanning electron microscopy of individual snow crystals. Journal of Glaciology, 1994, 40, 195-197.	1.1	10
212	When is the "presentâ€ ?. Quaternary Science Reviews, 2007, 26, 3023-3024.	1.4	10
213	Preparation of aqueous standards for low temperature x-ray microanalysis. Microscopy Research and Technique, 1992, 22, 207-211.	1.2	9
214	The past 800 ka viewed through Antarctic ice cores. Episodes, 2008, 31, 219-221.	0.8	9
215	Marine Isotope Stage 11c: An unusual interglacial. Quaternary Science Reviews, 2022, 284, 107493.	1.4	9
216	Climate dependent contrast in surface mass balance in East Antarctica over the past 216 ka. Journal of Glaciology, 2016, 62, 1037-1048.	1.1	8

#	Article	IF	CITATIONS
217	Trace metals in remote Arctic snows: natural or anthropogenic?. Nature, 1980, 284, 574-575.	13.7	7
218	A change in seasonality in Greenland during a Dansgaard–Oeschger warming. Annals of Glaciology, 2008, 48, 19-24.	2.8	7
219	Methane and monsoons. Nature, 2011, 470, 49-50.	13.7	7
220	Flow law for ice in polar ice sheets. Nature, 1985, 318, 83-83.	13.7	6
221	Impurity Distributions In Ice Under Different Environmental Conditions. Annals of Glaciology, 1990, 14, 362.	2.8	6
222	Year-round column ozone observations at 65°S: Validation and polar winter data. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, 54, 481-494.	1.1	6
223	The future of ice core science. Eos, 2006, 87, 39.	0.1	6
224	Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores. Analytical Chemistry, 2019, 91, 5051-5057.	3.2	6
225	Compositions of Dust and Sea Salts in the Dome C and Dome Fuji Ice Cores From Last Glacial Maximum to Early Holocene Based on Ice‧ublimation and Singleâ€Particle Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032208.	1.2	6
226	A Refined Method to Analyze Insoluble Particulate Matter in Ice Cores, and Its Application to Diatom Sampling in the Antarctic Peninsula. Frontiers in Earth Science, 2021, 9, .	0.8	6
227	The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum. PLoS ONE, 2016, 11, e0158553.	1.1	6
228	Antarctic accumulation seasonality. Nature, 2011, 479, E1-E2.	13.7	5
229	A new method for the determination of primary and secondary terrestrial and marine biomarkers in ice cores using liquid chromatography high-resolution mass spectrometry. Talanta, 2019, 194, 233-242.	2.9	5
230	Antarctic Ice Sheet Elevation Impacts on Water Isotope Records During the Last Interglacial. Geophysical Research Letters, 2021, 48, e2020GL091412.	1.5	5
231	The Record of Aerosol Deposited Species in Ice Cores, and Problems of Interpretation. , 1996, , 1-17.		5
232	Past atmospheric composition and chemistry from ice cores - progress and prospects. Environmental Chemistry, 2007, 4, 211.	0.7	4
233	Chapter 11 Late Pliocene–Pleistocene Antarctic Climate Variability at Orbital and Suborbital Scale: Ice Sheet, Ocean and Atmospheric Interactions. Developments in Earth and Environmental Sciences, 2008, , 465-529.	0.1	4
234	Acidity and DC Conductivity in Polar Ice (Abstract). Annals of Glaciology, 1985, 7, 60.	2.8	3

#	Article	IF	CITATIONS
235	Feedbacks on climate in the Earth system: introduction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140428.	1.6	3
236	Stratigraphic templates for ice core records of the past 1.5 Myr. Climate of the Past, 2022, 18, 1563-1577.	1.3	3
237	Comment [on "Electrical resistivity sounding of the East Antarctic ice sheet―by Sion Shabtaie and Charles R. Bentley]. Journal of Geophysical Research, 1996, 101, 27735-27737.	3.3	2
238	A good millennium?. Weather, 2000, 55, 2-7.	0.6	2
239	Preface "Climate change: from the geological past to the uncertain future – a symposium honouring André Berger". Climate of the Past, 2009, 5, 707-711.	1.3	2
240	A tale of two hemispheres. Nature, 2012, 484, 41-42.	13.7	2
241	PALEOCLIMATE Paleoclimate History of the Arctic. , 2013, , 113-125.		2
242	Climate in phase. Nature Geoscience, 2014, 7, 397-398.	5.4	2
243	James Croll and geological archives: testing astronomical theories of ice ages. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 0, , 1-12.	0.3	2
244	The challenge from ice cores: Understanding the climate and atmospheric composition of the late Quaternary. European Physical Journal Special Topics, 2006, 139, 185-196.	0.2	1
245	Etching channels and grain-boundary grooves on ice surfaces in the scanning electron microscope. Journal of Claciology, 2006, 52, 645-648.	1.1	1
246	Erratum to "Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica― [Earth Planet. Sci. Lett. 260 (2007) 340–354]. Earth and Planetary Science Letters, 2007, 262, 635-636.	1.8	1
247	Corrigendum to "Temperature and precipitation history of the Arctic―[Quat. Sci. Rev. 29 (2010) 1679–1715]. Quaternary Science Reviews, 2011, 30, 2841-2843.	1.4	1
248	Clarifications about the concept and review process of Climate of the Past. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 2043.	0.6	1
249	How has climate responded to natural perturbations?. , 0, , 72-101.		1
250	Evidence in Polar Ice Records. , 2018, , 151-156.		1
251	OBSOLETE: Evidence in polar ice records. , 2018, , .		1
252	Capture and scanning electron microscopy of individual snow crystals. Journal of Glaciology, 1994, 40, 195-197.	1.1	0

#	Article	IF	CITATIONS
253	Ancient air challenges prominent explanation for a shift in glacial cycles. Nature, 2019, 574, 636-637.	13.7	0
254	Corrigendum to Preface "Climate change: from the geological past to the uncertain future – a symposium honouring André Berger" published in Clim. Past, 5, 707–711, 2009. Climate of the Past, 2009, 5, 723-723.	1.3	0
255	Use of Snow and Firn Analysis to Reconstruct Past Atmospheric Composition -Discussion. , 1991, , 417-419.		0