Emel Tamahkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5226224/publications.pdf

Version: 2024-02-01

566801 610482 25 708 15 citations h-index papers

g-index 26 26 26 750 docs citations times ranked citing authors all docs

24

#	Article	IF	CITATIONS
1	Characterization and antibacterial activity of gelatin–gellan gum bilayer wound dressing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1240-1251.	1.8	12
2	Bacterial cellulose nanofibers for separation, drug delivery, wound dressing, and tissue engineering applications., 2022,, 1-20.		1
3	Evaluation of kappa carrageenan and gelatin based sponges for dental applications. Chemical Papers, 2022, 76, 4005-4015.	1.0	5
4	Molecularly imprinted smart cryogels for selective nickel recognition in aqueous solutions. Journal of Applied Polymer Science, 2021, 138, 49746.	1.3	10
5	Evaluation of hyaluronic acid nanoparticle embedded chitosan–gelatin hydrogels for antibiotic release. Drug Development Research, 2021, 82, 241-250.	1.4	33
6	Advancements and future directions in the antibacterial wound dressings – A review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 703-716.	1.6	47
7	Bacterial cellulose/poly vinyl alcohol based wound dressings with sustained antibiotic delivery. Chemical Papers, 2021, 75, 3979-3987.	1.0	13
8	Poly(vinyl alcohol)/(hyaluronic acid-g-kappa-carrageenan) hydrogel as antibiotic-releasing wound dressing. Chemical Papers, 2021, 75, 6591-6600.	1.0	17
9	Aloe vera-based antibacterial porous sponges for wound dressing applications. Journal of Porous Materials, 2021, 28, 741-750.	1.3	15
10	Phenol removal from wastewater by surface imprinted bacterial cellulose nanofibres. Environmental Technology (United Kingdom), 2020, 41, 3134-3145.	1,2	13
11	A novel multilayer hydrogel wound dressing for antibiotic release. Journal of Drug Delivery Science and Technology, 2020, 58, 101536.	1.4	47
12	Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 450-461.	1.9	53
13	Protein depletion with bacterial cellulose nanofibers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1099, 1-9.	1.2	18
14	Ion imprinted cryogels for selective removal of Ni(II) ions from aqueous solutions. Separation and Purification Technology, 2017, 179, 36-44.	3.9	55
15	Affinity binding of proteins to the modified bacterial cellulose nanofibers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1052, 121-127.	1.2	13
16	Surface imprinted bacterial cellulose nanofibers for hemoglobin purification. Colloids and Surfaces B: Biointerfaces, 2017, 158, 453-459.	2.5	30
17	Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1950-1965.	1.9	20
18	Synthesis of Chitosan-Based Hydrogels as a Novel Drug Release Device for Wound Healing. Hittite Journal of Science & Engineering, 2017, 4, 137-144.	0.2	7

#	Article	IF	CITATION
19	Toward a Universal Method for Preparing Molecularly Imprinted Polymer Nanoparticles with Antibody-like Affinity for Proteins. Biomacromolecules, 2016, 17, 345-353.	2.6	90
20	Surface imprinted bacterial cellulose nanofibers for cytochrome c purification. Process Biochemistry, 2015, 50, 2289-2297.	1.8	31
21	Metal ion coordination interactions for biomolecule recognition: a review. Hittite Journal of Science & Engineering, 2015, 1, 21-26.	0.2	18
22	Potential Evaluation of PVA-Based Hydrogels for Biomedical Applications. Hittite Journal of Science & Engineering, 2015, 2, 165-171.	0.2	10
23	2-Isopropenyl-2-oxazoline: A Versatile Monomer for Functionalization of Polymers Obtained via RAFT. Macromolecules, 2012, 45, 20-27.	2.2	61
24	Molecularly imprinted supermacroporous cryogels for cytochrome <i>c</i> recognition. Journal of Separation Science, 2011, 34, 3433-3440.	1.3	59
25	Bacterial cellulose nanofibers for albumin depletion from human serum. Process Biochemistry, 2010, 45, 1713-1719.	1.8	29