
Majid Soleimani-damaneh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5225898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shannon's entropy for combining the efficiency results of different DEA models: Method and application. Expert Systems With Applications, 2009, 36, 5146-5150.	4.4	95
2	A DEA model for resource allocation. Economic Modelling, 2008, 25, 983-993.	1.8	81
3	Computational and theoretical pitfalls in some current performance measurement techniques; and a new approach. Applied Mathematics and Computation, 2006, 181, 1199-1207.	1.4	65
4	Inverse DEA under inter-temporal dependence using multiple-objective programming. European Journal of Operational Research, 2015, 240, 447-456.	3.5	54
5	On the estimation of returns-to-scale in FDH models. European Journal of Operational Research, 2006, 174, 1055-1059.	3.5	49
6	Characterization of nonsmooth quasiconvex and pseudoconvex functions. Journal of Mathematical Analysis and Applications, 2007, 330, 1387-1392.	0.5	35
7	Characterization of (weakly/properly/robust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators. Optimization, 2018, 67, 217-235.	1.0	35
8	A polynomial-time algorithm to estimate returns to scale in FDH models. Computers and Operations Research, 2007, 34, 2168-2176.	2.4	33
9	A simplified version of the DEA cost efficiency model. European Journal of Operational Research, 2008, 184, 814-815.	3.5	33
10	Energy and Reserve Market Clearing With Microgrid Aggregators. IEEE Transactions on Smart Grid, 2016, 7, 2703-2712.	6.2	32
11	Fuzzy upper bounds and their applications. Chaos, Solitons and Fractals, 2008, 36, 217-225.	2.5	26
12	An optimization modelling for string selection in molecular biology using Pareto optimality. Applied Mathematical Modelling, 2011, 35, 3887-3892.	2.2	25
13	Robustness in nonsmooth nonlinear multi-objective programming. European Journal of Operational Research, 2015, 247, 370-378.	3.5	25
14	Estimating returns to scale in data envelopment analysis: A new procedure. Applied Mathematics and Computation, 2004, 150, 89-98.	1.4	24
15	A note on simulating weights restrictions in DEA: an improvement of Thanassoulis and Allen's method. Computers and Operations Research, 2005, 32, 1037-1044.	2.4	22
16	On Pareto (dynamically) efficient paths. International Journal of Computer Mathematics, 2006, 83, 631-635.	1.0	21
17	Stability of the classification of returns to scale in FDH models. European Journal of Operational Research, 2009, 196, 1223-1228.	3.5	21
18	Ratio-based RTS determination in weight-restricted DEA models. European Journal of Operational Research, 2011, 215, 431-438.	3.5	21

Majid Soleimani-damaneh

#	Article	IF	CITATIONS
19	Infinite (semi-infinite) problems to characterize the optimality of nonlinear optimization problems. European Journal of Operational Research, 2008, 188, 49-56.	3.5	20
20	Determination of returns to scale by CCR formulation without chasing down alternative optimal solutions. Applied Mathematics Letters, 2006, 19, 964-967.	1.5	19
21	An enumerative algorithm for solving nonconvex dynamic DEA models. Optimization Letters, 2013, 7, 101-115.	0.9	19
22	Establishing the existence of a distance-based upper bound for a fuzzy DEA model using duality. Chaos, Solitons and Fractals, 2009, 41, 485-490.	2.5	18
23	Another approach for estimating RTS in dynamic DEA. Journal of Productivity Analysis, 2013, 39, 75-81.	0.8	18
24	Optimality for nonsmooth fractional multiple objective programming. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68, 2873-2878.	0.6	17
25	An enhanced procedure for estimating returns-to-scale in DEA. Applied Mathematics and Computation, 2005, 171, 1226-1238.	1.4	15
26	Multiple-objective programs in Banach spaces: Sufficiency for (proper) optimality. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67, 958-962.	0.6	15
27	Nonsmooth multiobjective optimization using limiting subdifferentials. Journal of Mathematical Analysis and Applications, 2007, 328, 281-286.	0.5	15
28	Modified big-M method to recognize the infeasibility of linear programming models. Knowledge-Based Systems, 2008, 21, 377-382.	4.0	15
29	The gap function for optimization problems in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69, 716-723.	0.6	15
30	Scalarization for characterization of approximate strong/weak/proper efficiency in multi-objective optimization. Optimization, 2013, 62, 703-720.	1.0	15
31	Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems. Journal of Mathematical Analysis and Applications, 2016, 434, 638-651.	0.5	15
32	On the computational complexity of cost efficiency analysis models. Applied Mathematics and Computation, 2007, 188, 638-640.	1.4	14
33	Identifying the anchor points in DEA using sensitivity analysis in linear programming. European Journal of Operational Research, 2014, 237, 383-388.	3.5	14
34	Optimality conditions in optimization problems with convex feasible set using convexificators. Mathematical Methods of Operations Research, 2017, 86, 103-121.	0.4	14
35	Global variation of outputs with respect to the variation of inputs in performance analysis; generalized RTS. European Journal of Operational Research, 2008, 186, 786-800.	3.5	13
36	Generalized invexity in separable Hilbert spaces. Topology, 2009, 48, 66-79.	0.4	13

#	Article	IF	CITATIONS
37	Identification of the anchor points in FDH models. European Journal of Operational Research, 2015, 246, 936-943.	3.5	13
38	An effective computational attempt in DDEA. Applied Mathematical Modelling, 2009, 33, 3943-3948.	2.2	12
39	On some multiobjective optimization problems arising in biology. International Journal of Computer Mathematics, 2011, 88, 1103-1119.	1.0	12
40	Semi-differentiability of the Marginal Mapping in Vector Optimization. SIAM Journal on Optimization, 2018, 28, 1255-1281.	1.2	12
41	Strongly Proper Efficient Solutions: Efficient Solutions with Bounded Trade-Offs. Journal of Optimization Theory and Applications, 2016, 168, 864-883.	0.8	11
42	Robustness in Deterministic Vector Optimization. Journal of Optimization Theory and Applications, 2018, 179, 137-162.	0.8	11
43	Scalarization of set-valued optimization problems and variational inequalities in topological vector spaces. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 1429-1440.	0.6	10
44	<i>E</i> -convexity and its generalizations. International Journal of Computer Mathematics, 2011, 88, 3335-3349.	1.0	9
45	On a basic definition of returns to scale. Operations Research Letters, 2012, 40, 144-147.	0.5	9
46	Dual cone approach to convex-cone dominance in multiple criteria decision making. European Journal of Operational Research, 2016, 249, 1139-1143.	3.5	9
47	Nonlinear scalarization functions and polar cone in set optimization. Optimization Letters, 2017, 11, 521-535.	0.9	9
48	Relationships Between Convexificators and Greenberg–Pierskalla Subdifferentials for Quasiconvex Functions. Numerical Functional Analysis and Optimization, 2017, 38, 1548-1563.	0.6	9
49	A dual simplex-based method for determination of the right and left returns to scale in DEA. European Journal of Operational Research, 2009, 194, 585-591.	3.5	8
50	Scale elasticity and returns to scale in the presence of alternative solutions. Journal of Computational and Applied Mathematics, 2009, 233, 127-136.	1.1	8
51	A new approach to approximate the bounded Pareto front. Mathematical Methods of Operations Research, 2015, 82, 211-228.	0.4	8
52	A comment on "Returns to scale and scale elasticity in data envelopment analysis― European Journal of Operational Research, 2008, 184, 1179-1181.	3.5	7
53	A proof for Antczak's mean value theorem in invexity analysis. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68, 1073-1074.	0.6	7
54	Characterizations and applications of generalized invexity and monotonicity in Asplund spaces. Top, 2012, 20, 592-613.	1.1	7

#	Article	IF	CITATIONS
55	Robustness in deterministic multi-objective linear programming with respect to the relative interior and angle deviation. Optimization, 2016, 65, 1983-2005.	1.0	7
56	Optimal and strongly optimal solutions for linear programming models with variable parameters. Applied Mathematics Letters, 2007, 20, 1052-1056.	1.5	6
57	Nonsmooth multiple-objective optimization in separable Hilbert spaces. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 4553-4558.	0.6	6
58	Maximal flow in possibilistic networks. Chaos, Solitons and Fractals, 2009, 40, 370-375.	2.5	6
59	Returns to scale and scale elasticity in the presence of weight restrictions and alternative solutions. Knowledge-Based Systems, 2010, 23, 86-93.	4.0	6
60	Duality for optimization problems in Banach algebras. Journal of Global Optimization, 2012, 54, 375-388.	1.1	6
61	Isolated efficiency in nonsmooth semi-infinite multi-objective programming. Optimization, 2018, 67, 1923-1947.	1.0	6
62	Global sub-increasing and global sub-decreasing returns to scale in free disposal hull technologies: Definition, characterization and calculation. European Journal of Operational Research, 2020, 280, 230-241.	3.5	6
63	Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization. Journal of Global Optimization, 2020, 77, 627-641.	1.1	6
64	A mean value theorem in Asplund spaces. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68, 3103-3106.	0.6	5
65	A fast algorithm for determining some characteristics in DEA. Journal of the Operational Research Society, 2009, 60, 1528-1534.	2.1	5
66	On generalized convexity in Asplund spaces. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70, 3072-3075.	0.6	5
67	Infinite Alternative Theorems and Nonsmooth Constraint Qualification Conditions. Set-Valued and Variational Analysis, 2012, 20, 551-566.	0.5	5
68	A differential inclusion-based approach for solving nonsmooth convex optimization problems. Optimization, 2013, 62, 1203-1226.	1.0	5
69	On value efficiency. Optimization, 2014, 63, 617-631.	1.0	5
70	On Benson's scalarization in multiobjective optimization. Optimization Letters, 2016, 10, 1757-1762.	0.9	5
71	Characterization of Norm-Based Robust Solutions in Vector Optimization. Journal of Optimization Theory and Applications, 2020, 185, 554-573.	0.8	5
72	Optimality and invexity in optimization problems in Banach algebras (spaces). Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 5522-5530.	0.6	4

#	Article	IF	CITATIONS
73	Penalization for variational inequalities. Applied Mathematics Letters, 2009, 22, 347-350.	1.5	4
74	On fractional programming problems with absolute-value functions. International Journal of Computer Mathematics, 2011, 88, 661-664.	1.0	4
75	EFFICIENCY ANALYSIS OF PROVINCIAL DEPARTMENTS OF PHYSICAL EDUCATION IN IRAN. International Journal of Information Technology and Decision Making, 2012, 11, 983-1008.	2.3	4
76	Derivatives of Set-Valued Maps and Gap Functions for Vector Equilibrium Problems. Set-Valued and Variational Analysis, 2014, 22, 673-689.	0.5	4
77	Some Conditions for Characterizing Anchor Points. Asia-Pacific Journal of Operational Research, 2016, 33, 1650013.	0.9	4
78	Optimality, duality and gap function for quasi variational inequality problems. ESAIM - Control, Optimisation and Calculus of Variations, 2017, 23, 297-308.	0.7	4
79	Proper minimal points of nonconvex sets in Banach spaces in terms of the limiting normal cone. Optimization, 2017, 66, 473-489.	1.0	4
80	The use of quasi-concave value functions in MCDM: some theoretical results. Mathematical Methods of Operations Research, 2017, 86, 367-375.	0.4	4
81	Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure. Journal of Global Optimization, 2018, 71, 383-405.	1.1	4
82	Anchor points in multiobjective optimization: definition, characterization and detection. Optimization Methods and Software, 2019, 34, 1145-1167.	1.6	4
83	Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization. European Journal of Operational Research, 2022, 299, 35-45.	3.5	4
84	Sufficient Conditions for Nonsmooth <i>r</i> -Invexity. Numerical Functional Analysis and Optimization, 2008, 29, 674-686.	0.6	3
85	On optimality and duality for multiple-objective optimization under generalized type I univexity. International Journal of Computer Mathematics, 2009, 86, 1345-1354.	1.0	3
86	On gap functions for nonsmooth multiobjective optimization problems. Optimization Letters, 2018, 12, 273-286.	0.9	3
87	Closed form of the response function in FDH technologies: Theory, computation and application. RAIRO - Operations Research, 2020, 54, 53-68.	1.0	3
88	Preference score of units in the presence of ordinal data. Chaos, Solitons and Fractals, 2009, 39, 214-221.	2.5	2
89	Revisiting the gap function of a multicriteria optimization problem. International Journal of Computer Mathematics, 2009, 86, 860-863.	1.0	2
90	Characterizing a subset of the PPS maintaining the reference hyperplane of the radial projection point. Journal of the Operational Research Society, 2014, 65, 1876-1885.	2.1	2

Majid Soleimani-damaneh

#	Article	IF	CITATIONS
91	On Efficient Solutions with Trade-Offs Bounded by Given Values. Numerical Functional Analysis and Optimization, 2015, 36, 1431-1447.	0.6	2
92	Proper efficiency, scalarization and transformation in multi-objective optimization: unified approaches. Optimization, 2022, 71, 753-774.	1.0	2
93	An operational test for the existence of a consistent increasing quasi-concave value function. European Journal of Operational Research, 2021, 289, 232-239.	3.5	2
94	LR-NIMBUS: an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutions. Journal of Global Optimization, 2022, 83, 843-863.	1.1	2
95	A note on characterization of (weakly/properly/robust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators. Optimization, 2023, 72, 2393-2398.	1.0	2
96	On ratio-based RTS determination: An extension. European Journal of Operational Research, 2013, 231, 242-243.	3.5	1
97	Algebraic Interior and Separation on Linear Vector Spaces: Some Comments. Journal of Optimization Theory and Applications, 2014, 161, 994-998.	0.8	1
98	Generalized Convexity and Characterization of (Weak) Pareto-Optimality in Nonsmooth Multiobjective Optimization Problems. International Journal of Information Technology and Decision Making, 2015, 14, 877-899.	2.3	1
99	Linear transformations to decrease computational requirements ofÂsolving some known linear programmingÂmodels. Annals of Operations Research, 2009, 172, 37-43.	2.6	0
100	Operations research and optimization (ORO). Optimization, 2013, 62, 673-674.	1.0	0
101	Characterization of generalized FJ and KKT conditions in nonsmooth nonconvex optimization. Journal of Clobal Optimization, 2020, 76, 407-431.	1.1	0
102	Limiting proper minimal points of nonconvex sets in finite-dimensional spaces. Carpathian Journal of Mathematics, 2019, 35, 379-384.	0.4	0