
Xueqian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5225890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. Journal of Materials Chemistry A, 2017, 5, 730-738.	10.3	287
2	Synthesis of MoS ₂ @C Nanotubes Via the Kirkendall Effect with Enhanced Electrochemical Performance for Lithium Ion and Sodium Ion Batteries. Small, 2016, 12, 2484-2491.	10.0	192
3	A Highâ€Energy and Longâ€Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn ²⁺ Coinsertion. Small, 2020, 16, e2001228.	10.0	75
4	Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. Journal of Materials Chemistry A, 2016, 4, 856-860.	10.3	62
5	Formation of Solid–Electrolyte Interfaces in Aqueous Electrolytes by Altering Cationâ€Solvation Shell Structure. Advanced Energy Materials, 2020, 10, 1903665.	19.5	59
6	Passivation effect for current collectors enables high-voltage aqueous sodium ion batteries. Materials Today Energy, 2019, 14, 100337.	4.7	32
7	MoO 2 nanoparticles as high capacity intercalation anode material for long-cycle lithium ion battery. Electrochimica Acta, 2016, 213, 416-422.	5.2	26
8	Aqueous electrolyte with moderate concentration enables high-energy aqueous rechargeable lithium ion battery for large scale energy storage. Energy Storage Materials, 2022, 46, 147-154.	18.0	26
9	Construction of hierarchical MoSe ₂ @C hollow nanospheres for efficient lithium/sodium ion storage. Inorganic Chemistry Frontiers, 2020, 7, 1691-1698.	6.0	22
10	Hierarchical interlayer-expanded MoSe ₂ /N–C nanorods for high-rate and long-life sodium and potassium-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 1271-1278.	6.0	22
11	Pb-Doped Lithium-Rich Cathode Material for High Energy Density Lithium-Ion Full Batteries. Journal of the Electrochemical Society, 2019, 166, A2960-A2965.	2.9	16
12	Aqueous Rechargeable Li ⁺ /Na ⁺ Hybrid Ion Battery with High Energy Density and Long Cycle Life. Small, 2020, 16, e2003585.	10.0	16
13	Bridging cells of three colors with two bio-orthogonal click reactions. Chemical Science, 2015, 6, 6425-6431.	7.4	15
14	^{99m} Tcâ€labeled oligomeric nanoparticles as potential agents for folate receptorâ€positive tumor targeting. Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61, 54-60.	1.0	12
15	An aqueous rechargeable lithium ion battery with long cycle life and overcharge self-protection. Materials Chemistry Frontiers, 2021, 5, 2749-2757.	5.9	9
16	Synchronously synthesized Si@C composites through solvothermal oxidation of Mg ₂ Si as lithium ion battery anode. RSC Advances, 2015, 5, 71355-71359.	3.6	8