Jing Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/522586/publications.pdf

Version: 2024-02-01

		172457	123424
62	5,500	29	61
papers	citations	h-index	g-index
64	64	64	9268
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Vapor phase epitaxy of PbS single-crystal films on water-soluble substrates and application to photodetectors. Nano Research, 2022, 15, 5402-5409.	10.4	3
2	Epitaxial growth of structure-tunable ZnO/ZnS core/shell nanowire arrays using HfO ₂ as the buffer layer. Nanoscale, 2022, 14, 7579-7588.	5.6	5
3	Edgeâ€Assisted Epitaxy of 2D TaSe ₂ â€MoSe ₂ Metal–Semiconductor Heterostructures and Application to Schottky Diodes. Advanced Functional Materials, 2022, 32, .	14.9	10
4	Signal detection based on the chaotic motion of an antiferromagnetic domain wall. Applied Physics Letters, 2021, 118, .	3.3	4
5	Al ₂ O ₃ buffer-facilitated epitaxial growth of high-quality ZnO/ZnS core/shell nanorod arrays. Nanoscale, 2021, 13, 11525-11533.	5.6	6
6	A frustrated bimeronium: Static structure and dynamics. Applied Physics Letters, 2021, 118, .	3.3	13
7	Anomalous mechanics of Zn $<$ sup $>2+sup>-modified fibrin networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .$	7.1	14
8	Current-induced dynamics of skyrmion tubes in synthetic antiferromagnetic multilayers. Physical Review B, 2021, 103, .	3.2	16
9	Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of <i>InÂVitro</i> Multicomponent Interpenetrating Cytoskeletal Networks. Physical Review Letters, 2021, 127, 108101.	7.8	15
10	Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nature Communications, 2021, 12, 6600.	12.8	52
11	Configurable pixelated skyrmions on nanoscale magnetic grids. Communications Physics, 2021, 4, .	5.3	14
12	Dynamic transformation between a skyrmion string and a bimeron string in a layered frustrated system. Physical Review B, 2021, 104, .	3.2	7
13	Intermetallic Nanocrystals: Bromide Ions Triggered Synthesis of Noble Metal–Based Intermetallic Nanocrystals (Small 40/2020). Small, 2020, 16, 2070219.	10.0	3
14	Bromide Ions Triggered Synthesis of Noble Metal–Based Intermetallic Nanocrystals. Small, 2020, 16, 2003782.	10.0	21
15	Droplet encapsulation improves accuracy of immune cell cytokine capture assays. Lab on A Chip, 2020, 20, 1513-1520.	6.0	30
16	Current-driven skyrmionium in a frustrated magnetic system. Applied Physics Letters, 2020, 117 , .	3.3	22
17	Current-Induced Dynamics and Chaos of Antiferromagnetic Bimerons. Physical Review Letters, 2020, 124, 037202.	7.8	82
18	Dynamics of an elliptical ferromagnetic skyrmion driven by the spin–orbit torque. Applied Physics Letters, 2020, 116, .	3.3	27

#	Article	IF	Citations
19	Decoupling the effects of nanopore size and surface roughness on the attachment, spreading and differentiation of bone marrow-derived stem cells. Biomaterials, 2020, 248, 120014.	11.4	57
20	Static and dynamic properties of bimerons in a frustrated ferromagnetic monolayer. Physical Review B, 2020, 101, .	3.2	40
21	Epitaxial Growth of Largeâ€Scale Orthorhombic CsPbBr ₃ Perovskite Thin Films with Anisotropic Photoresponse Property. Advanced Functional Materials, 2019, 29, 1904913.	14.9	55
22	In Situ Measurement of Depletion Caused by SDBS Micelles on the Surface of Silica Particles Using Optical Tweezers. Langmuir, 2019, 35, 13536-13542.	3.5	12
23	Spin torque nano-oscillators based on antiferromagnetic skyrmions. Applied Physics Letters, 2019, 114,	3.3	106
24	Growth of vertical heterostructures based on orthorhombic SnSe/hexagonal In2Se3 for high-performance photodetectors. Nanoscale Advances, 2019, 1, 2606-2611.	4.6	14
25	Current-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer. Physical Review Applied, 2019, 11, .	3.8	31
26	Generation and Hall effect of skyrmions enabled using nonmagnetic point contacts. Physical Review B, 2019, 100, .	3.2	14
27	The Remote Light Emission Modulated by Local Surface Plasmon Resonance for the CdSe NW–Au NP Hybrid Structure. Advanced Materials Interfaces, 2019, 6, 1801418.	3.7	4
28	Dynamics of a magnetic skyrmionium driven by spin waves. Applied Physics Letters, 2018, 112, .	3.3	43
29	Dynamics of the antiferromagnetic skyrmion induced by a magnetic anisotropy gradient. Physical Review B, 2018, 98, .	3.2	84
30	Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. Nature Communications, 2018, 9, 1899.	12.8	43
31	Dynamics of Magnetic Skyrmion Clusters Driven by Spin-Polarized Current With a Spatially Varied Polarization. IEEE Magnetics Letters, 2018, 9, 1-5.	1.1	6
32	Carbon Dots as Multifunctional Phototheranostic Agents for Photoacoustic/Fluorescence Imaging and Photothermal/Photodynamic Synergistic Cancer Therapy. Advanced Therapeutics, 2018, 1, 1800077.	3.2	77
33	Edgeâ€Epitaxial Growth of 2D NbS ₂ â€WS ₂ Lateral Metalâ€Semiconductor Heterostructures. Advanced Materials, 2018, 30, e1803665.	21.0	109
34	Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a Highâ€Efficiency Electrocatalyst for Hydrogen Evolution. Advanced Science, 2018, 5, 1800406.	11.2	163
35	Aligned Growth of Millimeterâ€Size Hexagonal Boron Nitride Singleâ€Crystal Domains on Epitaxial Nickel Thin Film. Small, 2017, 13, 1604179.	10.0	76
36	Epitaxial growth of wafer-scale two-dimensional polytypic ZnS thin films on ZnO substrates. CrystEngComm, 2017, 19, 2294-2299.	2.6	9

#	Article	IF	CITATIONS
37	A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation. Journal of Applied Physics, 2017, 122, .	2.5	24
38	van der Waals epitaxial two-dimensional CdS $<$ sub $>$ x $<$ /sub $>$ Se $<$ sub $>$ (1 \hat{a} °x) $<$ /sub $>$ semiconductor alloys with tunable-composition and application to flexible optoelectronics. Nanoscale, 2017, 9, 13786-13793.	5.6	30
39	Skyrmion dynamicsÂin a frustrated ferromagnetic filmÂand current-induced helicity locking-unlocking transition. Nature Communications, 2017, 8, 1717.	12.8	147
40	Epitaxial growth of HfS ₂ on sapphire by chemical vapor deposition and application for photodetectors. 2D Materials, 2017, 4, 031012.	4.4	43
41	Zinc promotes clot stability by accelerating clot formation and modifying fibrin structure. Thrombosis and Haemostasis, 2016, 115, 533-542.	3.4	30
42	van der Waals epitaxy and photoresponse of two-dimensional CdSe plates. Nanoscale, 2016, 8, 11375-11379.	5.6	34
43	In Situ Formation of Crystallographically Oriented Semiconductor Nanowire Arrays via Selective Vaporization for Optoelectronic Applications. Advanced Materials, 2016, 28, 7603-7612.	21.0	12
44	Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction. Scientific Reports, 2016, 6, 25189.	3.3	11
45	Epitaxy of Layered Orthorhombic SnS–SnS <i>>_x</i> >Se _{(1â°'} <i>_x</i> > ₎ Core–Shell Heterostructures with Anisotropic Photoresponse. Advanced Functional Materials, 2016, 26, 4673-4679.	14.9	45
46	Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale, 2016, 8, 2063-2070.	5.6	206
47	Three dimensional ZnO nanotube arrays and their optical tuning through formation of type-II heterostructures. CrystEngComm, 2016, 18, 2517-2523.	2.6	7
48	Largeâ€Scale Growth of Twoâ€Dimensional SnS ₂ Crystals Driven by Screw Dislocations and Application to Photodetectors. Advanced Functional Materials, 2015, 25, 4255-4261.	14.9	184
49	Synthesis of Largeâ€Sized Singleâ€Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition. Advanced Materials, 2015, 27, 8109-8115.	21.0	74
50	Ultraviolet photodetectors with high photosensitivity based on type-II ZnS/SnO ₂ core/shell heterostructured ribbons. Nanoscale, 2015, 7, 5311-5319.	5.6	35
51	A carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism. Chemical Communications, 2015, 51, 15574-15577.	4.1	94
52	Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors and Actuators B: Chemical, 2015, 207, 801-810.	7.8	385
53	Multifunctional Skinâ€Like Electronics for Quantitative, Clinical Monitoring of Cutaneous Wound Healing. Advanced Healthcare Materials, 2014, 3, 1597-1607.	7.6	226
54	Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1927-1932.	7.1	720

#	Article	IF	CITATION
55	CVD synthesis of large-area, highly crystalline MoSe ₂ atomic layers on diverse substrates and application to photodetectors. Nanoscale, 2014, 6, 8949.	5.6	418
56	Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nature Communications, 2014, 5, 4496.	12.8	757
57	Materials and Optimized Designs for Humanâ€Machine Interfaces Via Epidermal Electronics. Advanced Materials, 2013, 25, 6839-6846.	21.0	649
58	The structural and optical properties of a single ZnO comb and an individual nail-like tooth. CrystEngComm, 2013, 15, 10604.	2.6	6
59	Type-II ZnO nanorod–SnO2 nanoparticle heterostructures: characterization of structural, optical and photocatalytic properties. Nanoscale, 2013, 5, 3828.	5.6	48
60	Design of two-dimensional horseshoe layout for stretchable electronic systems. Journal of Materials Science, 2013, 48, 8443-8448.	3.7	17
61	Epidermal Electronics: Materials and Optimized Designs for Humanâ€Machine Interfaces Via Epidermal Electronics (Adv. Mater. 47/2013). Advanced Materials, 2013, 25, 6776-6776.	21.0	11
62	The effect of the easy axis orientation on the magnetic properties of hard/soft multilayers. Scientia Sinica: Physica, Mechanica Et Astronomica, 2013, 43, 39-47.	0.4	0