
## Todd A Castoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5225476/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Identification of an integrated stress and growth response signaling switch that directs vertebrate intestinal regeneration. BMC Genomics, 2022, 23, 6.                                                           | 1.2 | 1         |
| 2  | A chromosome-level genome assembly and annotation of the desert horned lizard, <i>Phrynosoma platyrhinos</i> , provides insight into chromosomal rearrangements among reptiles. GigaScience, 2022, 11, .          | 3.3 | 12        |
| 3  | A genomic can of worms for schistosome host-specificity. Trends in Parasitology, 2022, 38, 496-497.                                                                                                               | 1.5 | 1         |
| 4  | Snake venom gene expression is coordinated by novel regulatory architecture and the integration of multiple co-opted vertebrate pathways. Genome Research, 2022, 32, 1058-1073.                                   | 2.4 | 14        |
| 5  | The roles of balancing selection and recombination in the evolution of rattlesnake venom. Nature<br>Ecology and Evolution, 2022, 6, 1367-1380.                                                                    | 3.4 | 13        |
| 6  | Origins, genomic structure and copy number variation of snake venom myotoxins. Toxicon, 2022, 216, 92-106.                                                                                                        | 0.8 | 5         |
| 7  | <i>PhyloWGA</i> : chromosome-aware phylogenetic interrogation of whole genome alignments.<br>Bioinformatics, 2021, 37, 1923-1925.                                                                                 | 1.8 | 1         |
| 8  | Microchromosomes Exhibit Distinct Features of Vertebrate Chromosome Structure and Function<br>with Underappreciated Ramifications for Genome Evolution. Molecular Biology and Evolution, 2021,<br>38, 904-910.    | 3.5 | 28        |
| 9  | Patterns of relatedness and genetic diversity inferred from whole genome sequencing of archival<br>blood fluke miracidia (Schistosoma japonicum). PLoS Neglected Tropical Diseases, 2021, 15, e0009020.           | 1.3 | 8         |
| 10 | Population genomic analyses of schistosome parasites highlight critical challenges facing endgame elimination efforts. Scientific Reports, 2021, 11, 6884.                                                        | 1.6 | 8         |
| 11 | Genome-wide data implicate terminal fusion automixis in king cobra facultative parthenogenesis.<br>Scientific Reports, 2021, 11, 7271.                                                                            | 1.6 | 10        |
| 12 | The effects of climate and demographic history in shaping genomic variation across populations of the Desert Horned Lizard ( <i>Phrynosoma platyrhinos</i> ). Molecular Ecology, 2021, 30, 4481-4496.             | 2.0 | 8         |
| 13 | Population Genomic Analyses Confirm Male-Biased Mutation Rates in Snakes. Journal of Heredity, 2021, 112, 221-227.                                                                                                | 1.0 | 5         |
| 14 | Probabilistic Species Tree Distances: Implementing the Multispecies Coalescent to Compare Species<br>Trees Within the Same Model-Based Framework Used to Estimate Them. Systematic Biology, 2020, 69,<br>194-207. | 2.7 | 2         |
| 15 | Viral CpG Deficiency Provides No Evidence That Dogs Were Intermediate Hosts for SARS-CoV-2.<br>Molecular Biology and Evolution, 2020, 37, 2706-2710.                                                              | 3.5 | 18        |
| 16 | Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic.<br>Nature Microbiology, 2020, 5, 1408-1417.                                                                    | 5.9 | 772       |
| 17 | Genome-wide SNPs clarify lineage diversity confused by coloration in coralsnakes of the Micrurus<br>diastema species complex (Serpentes: Elapidae). Molecular Phylogenetics and Evolution, 2020, 147,<br>106770.  | 1.2 | 20        |
| 18 | Physiological demands and signaling associated with snake venom production and storage illustrated by transcriptional analyses of venom glands. Scientific Reports, 2020, 10, 18083.                              | 1.6 | 11        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Discovery and characterization of New Delhi metallo-β-lactamase-1 inhibitor peptides that potentiate<br>meropenem-dependent killing of carbapenemase-producing Enterobacteriaceae. Journal of<br>Antimicrobial Chemotherapy, 2020, 75, 2843-2851. | 1.3 | 13        |
| 20 | Snake Recombination Landscapes Are Concentrated in Functional Regions despite PRDM9. Molecular<br>Biology and Evolution, 2020, 37, 1272-1294.                                                                                                     | 3.5 | 45        |
| 21 | Vertebrate Lineages Exhibit Diverse Patterns of Transposable Element Regulation and Expression across Tissues. Genome Biology and Evolution, 2020, 12, 506-521.                                                                                   | 1.1 | 29        |
| 22 | Multi-species comparisons of snakes identify coordinated signalling networks underlying<br>post-feeding intestinal regeneration. Proceedings of the Royal Society B: Biological Sciences, 2019,<br>286, 20190910.                                 | 1.2 | 10        |
| 23 | Genomic Basis of Convergent Island Phenotypes in Boa Constrictors. Genome Biology and Evolution, 2019, 11, 3123-3143.                                                                                                                             | 1.1 | 14        |
| 24 | Supergene validation: A model-based protocol for assessing the accuracy of non-model-based supergene methods. MethodsX, 2019, 6, 2181-2188.                                                                                                       | 0.7 | 1         |
| 25 | Recent Advances in the Inference of Gene Flow from Population Genomic Data. Current Molecular<br>Biology Reports, 2019, 5, 107-115.                                                                                                               | 0.8 | 1         |
| 26 | Allopatric divergence and secondary contact with gene flow: a recurring theme in rattlesnake speciation. Biological Journal of the Linnean Society, 2019, 128, 149-169.                                                                           | 0.7 | 25        |
| 27 | The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Research, 2019, 29, 590-601.                                                                                          | 2.4 | 114       |
| 28 | The transcriptome of the veiled chameleon ( Chamaeleo calyptratus ): A resource for studying the evolution and development of vertebrates. Developmental Dynamics, 2019, 248, 702-708.                                                            | 0.8 | 26        |
| 29 | Statistical binning leads to profound model violation due to gene tree error incurred by trying to avoid gene tree error. Molecular Phylogenetics and Evolution, 2019, 134, 164-171.                                                              | 1.2 | 20        |
| 30 | Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals. Proceedings of the United States of America, 2019, 116, 25745-25755.                                                                                             | 3.3 | 42        |
| 31 | Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry. Molecular Biology and Evolution, 2018, 35, 1376-1389.                                                          | 3.5 | 26        |
| 32 | ThetaMater: Bayesian estimation of population size parameter $\hat{I}_{,}$ from genomic data. Bioinformatics, 2018, 34, 1072-1073.                                                                                                                | 1.8 | 8         |
| 33 | Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes<br>(Crotalus scutulatus). Scientific Reports, 2018, 8, 17622.                                                                                   | 1.6 | 42        |
| 34 | Evolution: Plasticity versus Selection, or Plasticity and Selection?. Current Biology, 2018, 28, R1104-R1106.                                                                                                                                     | 1.8 | 16        |
| 35 | Novel ecological and climatic conditions drive rapid adaptation in invasive Florida Burmese pythons.<br>Molecular Ecology, 2018, 27, 4744-4757.                                                                                                   | 2.0 | 30        |
| 36 | Plasticity and local adaptation explain lizard cold tolerance. Molecular Ecology, 2018, 27, 2173-2175.                                                                                                                                            | 2.0 | 7         |

| #  | Article                                                                                                                                                                                                  | IF               | CITATIONS       |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| 37 | Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome. Genome Biology and Evolution, 2018, 10, 2110-2129.                           | 1.1              | 72              |
| 38 | Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals.<br>Nature Communications, 2018, 9, 2774.                                                             | 5.8              | 101             |
| 39 | Assessing the Impacts of Positive Selection on Coalescent-Based Species Tree Estimation and Species Delimitation. Systematic Biology, 2018, 67, 1076-1090.                                               | 2.7              | 20              |
| 40 | Cryptic genetic diversity, population structure, and gene flow in the Mojave rattlesnake (Crotalus) Tj ETQq0 0 0                                                                                         | rgBT /Ove<br>1.2 | erloçk 10 Tf 50 |
| 41 | <i>GppFst</i> : genomic posterior predictive simulations of <i>FST</i> and <i>dXY</i> for identifying outlier loci from population genomic data. Bioinformatics, 2017, 33, 1414-1415.                    | 1.8              | 9               |
| 42 | Hormonally Mediated Increases in Sex-Biased Gene Expression Accompany the Breakdown of<br>Between-Sex Genetic Correlations in a Sexually Dimorphic Lizard. American Naturalist, 2017, 189,<br>315-332.   | 1.0              | 54              |
| 43 | Insight into the roles of selection in speciation from genomic patterns of divergence and<br>introgression in secondary contact in venomous rattlesnakes. Ecology and Evolution, 2017, 7,<br>3951-3966.  | 0.8              | 34              |
| 44 | Contrasting gene expression programs correspond with predatorâ€induced phenotypic plasticity within and across generations in <i>Daphnia</i> . Molecular Ecology, 2017, 26, 5003-5015.                   | 2.0              | 39              |
| 45 | The Discovery of XY Sex Chromosomes in a Boa and Python. Current Biology, 2017, 27, 2148-2153.e4.                                                                                                        | 1.8              | 105             |
| 46 | Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the<br>Burmese python. BMC Genomics, 2017, 18, 338.                                                           | 1.2              | 32              |
| 47 | Targeted capture of complete coding regions across divergent species. Genome Biology and Evolution, 2017, 9, evx005.                                                                                     | 1.1              | 15              |
| 48 | Whole Genome Amplification and Reduced-Representation Genome Sequencing of Schistosoma japonicum Miracidia. PLoS Neglected Tropical Diseases, 2017, 11, e0005292.                                        | 1.3              | 23              |
| 49 | Genetic surfing, not allopatric divergence, explains spatial sorting of mitochondrial haplotypes in<br>venomous coralsnakes. Evolution; International Journal of Organic Evolution, 2016, 70, 1435-1449. | 1.1              | 33              |
| 50 | Phylogeographic and population genetic analyses reveal multiple species of Boa and independent origins of insular dwarfism. Molecular Phylogenetics and Evolution, 2016, 102, 104-116.                   | 1.2              | 47              |
| 51 | A suite of potentially amplifiable microsatellite loci for ten reptiles of conservation concern from<br>Africa and Asia. Conservation Genetics Resources, 2016, 8, 307-311.                              | 0.4              | 3               |
| 52 | Epi <scp>RAD</scp> seq: scalable analysis of genomewide patterns of methylation using nextâ€generation sequencing. Methods in Ecology and Evolution, 2016, 7, 60-69.                                     | 2.2              | 74              |
| 53 | A cryptic palm-pitviper species (Squamata: Viperidae: Bothriechis) from the Costa Rican highlands, with<br>notes on the variation within B. nigroviridisÂ. Zootaxa, 2016, 4138, 271-90.                  | 0.2              | 13              |
| 54 | Historical Contingency in a Multigene Family Facilitates Adaptive Evolution of Toxin Resistance.<br>Current Biology, 2016, 26, 1616-1621.                                                                | 1.8              | 47              |

| #  | Article                                                                                                                                                                                                                                                                                            | IF                   | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|
| 55 | Local adaptation in transgenerational responses to predators. Proceedings of the Royal Society B:<br>Biological Sciences, 2016, 283, 20152271.                                                                                                                                                     | 1.2                  | 65            |
| 56 | Contrasting patterns of evolutionary diversification in the olfactory repertoires of reptile and bird genomes. Genome Biology and Evolution, 2016, 8, evw013.                                                                                                                                      | 1.1                  | 28            |
| 57 | Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome, 2016, 59, 295-310.                                                                                                                                                                 | 0.9                  | 40            |
| 58 | Incipient speciation with biased gene flow between two lineages of the Western Diamondback<br>Rattlesnake (Crotalus atrox). Molecular Phylogenetics and Evolution, 2015, 83, 213-223.                                                                                                              | 1.2                  | 43            |
| 59 | Development of 13 microsatellites for Gunnison Sage-grouse (Centrocercus minimus) using next-generation shotgun sequencing and their utility in Greater Sage-grouse (Centrocercus) Tj ETQq1 1 0.784314                                                                                             | 4 n <b>g.⊒</b> T /Ov | verlock 10 Tf |
| 60 | Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding. Physiological Genomics, 2015, 47, 147-157.                                                                                                                               | 1.0                  | 28            |
| 61 | Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado:<br>Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the<br>immunoreactivity of the commercial antivenom CroFab®. Journal of Proteomics, 2015, 121, 28-43. | 1.2                  | 70            |
| 62 | Expression of Venom Gene Homologs in Diverse Python Tissues Suggests a New Model for the Evolution of Snake Venom. Molecular Biology and Evolution, 2015, 32, 173-183.                                                                                                                             | 3.5                  | 93            |
| 63 | Genetic consequences of postglacial range expansion in two codistributed rodents (genus) Tj ETQq1 1 0.784314                                                                                                                                                                                       | rgBT /Ove            | erlggk 10 T   |
| 64 | Two Low Coverage Bird Genomes and a Comparison of Reference-Guided versus De Novo Genome<br>Assemblies. PLoS ONE, 2014, 9, e106649.                                                                                                                                                                | 1.1                  | 30            |
| 65 | Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science, 2014, 346, 1254449.                                                                                                                                                                                    | 6.0                  | 300           |
| 66 | Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. GigaScience, 2014, 3, 27.                                                                                                                                | 3.3                  | 72            |
| 67 | New insights on facultative parthenogenesis in pythons. Biological Journal of the Linnean Society, 2014, 112, 461-468.                                                                                                                                                                             | 0.7                  | 31            |
| 68 | Phylogenetic relationships of the enigmatic longtailed rattlesnakes (Crotalus ericsmithi, C. lannomi,) Tj ETQq0 0 (                                                                                                                                                                                | ) rgBT /Ov<br>£2     | erlock 10 Tf  |
| 69 | Development and characterization of thirteen microsatellite loci in Clark's nutcracker (Nucifraga) Tj ETQq1 1                                                                                                                                                                                      | 0.784314<br>0.4      | rgBT /Over    |
| 70 | The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proceedings of the United States of America, 2013, 110, 20645-20650.                                                                                                                                       | 3.3                  | 260           |
| 71 | The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20651-20656.                                                                                         | 3.3                  | 412           |
| 72 | Comparative Phylogeographic Analyses Illustrate the Complex Evolutionary History of Threatened<br>Cloud Forests of Northern Mesoamerica. PLoS ONE, 2013, 8, e56283.                                                                                                                                | 1.1                  | 144           |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Chinese alligator genome illustrates molecular adaptations. Cell Research, 2013, 23, 1254-1255.                                                                                                                       | 5.7  | 3         |
| 74 | Germline TRAV5D-4 T-Cell Receptor Sequence Targets a Primary Insulin Peptide of NOD Mice. Diabetes, 2012, 61, 857-865.                                                                                                | 0.3  | 31        |
| 75 | Transcriptome sequencing of black grouse ( Tetrao tetrix ) for immune gene discovery and microsatellite development. Open Biology, 2012, 2, 120054.                                                                   | 1.5  | 26        |
| 76 | LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders. Genome<br>Biology and Evolution, 2012, 4, 168-183.                                                                                  | 1.1  | 152       |
| 77 | Report from the First Snake Genomics and Integrative Biology Meeting. Standards in Genomic Sciences, 2012, 7, 150-152.                                                                                                | 1.5  | 4         |
| 78 | Thousands of microsatellite loci from the venomous coralsnake M icrurus fulvius and variability of select loci across populations and related species. Molecular Ecology Resources, 2012, 12, 1105-1113.              | 2.2  | 26        |
| 79 | Rapid Microsatellite Identification from Illumina Paired-End Genomic Sequencing in Two Birds and a Snake. PLoS ONE, 2012, 7, e30953.                                                                                  | 1.1  | 208       |
| 80 | Cryptic diversity in disjunct populations of Middle American Montane Pitvipers: a systematic reassessment of <i>Cerrophidion godmani</i> . Zoologica Scripta, 2012, 41, 455-470.                                      | 0.7  | 23        |
| 81 | The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature, 2011, 477, 587-591.                                                                                                   | 13.7 | 575       |
| 82 | Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Genome Biology, 2011, 12, 406.                                                         | 13.9 | 58        |
| 83 | Bayesian Analysis of High-Throughput Quantitative Measurement of Protein-DNA Interactions. PLoS<br>ONE, 2011, 6, e26105.                                                                                              | 1.1  | 2         |
| 84 | Discovery of Highly Divergent Repeat Landscapes in Snake Genomes Using High-Throughput<br>Sequencing. Genome Biology and Evolution, 2011, 3, 641-653.                                                                 | 1.1  | 87        |
| 85 | A proposal to sequence the genome of a garter snake (Thamnophis sirtalis). Standards in Genomic<br>Sciences, 2011, 4, 257-270.                                                                                        | 1.5  | 31        |
| 86 | A multi-organ transcriptome resource for the Burmese Python (Python molurus bivittatus). BMC<br>Research Notes, 2011, 4, 310.                                                                                         | 0.6  | 18        |
| 87 | Repetitive Elements May Comprise Over Two-Thirds of the Human Genome. PLoS Genetics, 2011, 7, e1002384.                                                                                                               | 1.5  | 907       |
| 88 | Comparison of Normalization Methods for Construction of Large, Multiplex Amplicon Pools for<br>Next-Generation Sequencing. Applied and Environmental Microbiology, 2010, 76, 3863-3868.                               | 1.4  | 71        |
| 89 | Adaptive molecular convergences. Communicative and Integrative Biology, 2010, 3, 67-69.                                                                                                                               | 0.6  | 13        |
| 90 | Rapid identification of thousands of copperhead snake ( <i>Agkistrodon contortrix</i> ) microsatellite<br>loci from modest amounts of 454 shotgun genome sequence. Molecular Ecology Resources, 2010, 10,<br>341-347. | 2.2  | 179       |

| #   | Article                                                                                                                                                                                                                           | IF                | CITATIONS           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 91  | Identifying DNA Strands Using a Kernel of Classified Sequences. , 2009, , .                                                                                                                                                       |                   | 0                   |
| 92  | Evidence for an ancient adaptive episode of convergent molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8986-8991.                                                | 3.3               | 284                 |
| 93  | Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland<br>biogeography. Journal of Biogeography, 2009, 36, 88-103.                                                                      | 1.4               | 157                 |
| 94  | Identification of repeat structure in large genomes using repeat probability clouds. Analytical<br>Biochemistry, 2008, 380, 77-83.                                                                                                | 1.1               | 51                  |
| 95  | Adaptive Evolution and Functional Redesign of Core Metabolic Proteins in Snakes. PLoS ONE, 2008, 3, e2201.                                                                                                                        | 1.1               | 113                 |
| 96  | An ancient adaptive episode of convergent molecular evolution confounds phylogenetic inference.<br>Nature Precedings, 2008, , .                                                                                                   | 0.1               | 1                   |
| 97  | A novel group of type I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs.<br>Gene, 2007, 392, 47-58.                                                                                                   | 1.0               | 59                  |
| 98  | Phylogeographic structure and historical demography of the western diamondback rattlesnake<br>(Crotalus atrox): A perspective on North American desert biogeography. Molecular Phylogenetics and<br>Evolution, 2007, 42, 193-212. | 1.2               | 127                 |
| 99  | Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Molecular Phylogenetics and Evolution, 2006, 39, 91-110.                                                                                             | 1.2               | 189                 |
| 100 | Modeling nucleotide evolution at the mesoscale: The phylogeny of the Neotropical pitvipers of the<br>Porthidium group (Viperidae: Crotalinae). Molecular Phylogenetics and Evolution, 2005, 37, 881-898.                          | 1.2               | 60                  |
| 101 | Phylogenetic taxonomy of the Cercosaurini (Squamata: Gymnophthalmidae), with new genera for species of Neusticurus and Proctoporus. Zoological Journal of the Linnean Society, 2005, 143, 405-416.                                | 1.0               | 57                  |
| 102 | Historical perspectives on population genetics and conservation of three marine turtle species.<br>Conservation Genetics, 2005, 6, 235-251.                                                                                       | 0.8               | 38                  |
| 103 | Evidence of Population Genetic Structure within the Florida Worm Lizard, Rhineura floridana<br>(Amphisbaenia: Rhineuridae). Journal of Herpetology, 2005, 39, 118-124.                                                            | 0.2               | 15                  |
| 104 | PHYLOGENETIC RELATIONSHIPS OF THE GENUS PROCTOPORUS SENSU STRICTO (SQUAMATA:) TJ ETQq0 0 0 rgB 325-336.                                                                                                                           | T /Overloo<br>0.2 | ck 10 Tf 50 2<br>14 |
| 105 | Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus). Molecular<br>Phylogenetics and Evolution, 2004, 31, 1015-1030.                                                                                  | 1.2               | 116                 |
| 106 | Data Partitions and Complex Models in Bayesian Analysis: The Phylogeny of Gymnophthalmid Lizards.<br>Systematic Biology, 2004, 53, 448-469.                                                                                       | 2.7               | 201                 |
| 107 | MOLECULAR SYSTEMATICS OF THE MIDDLE AMERICAN JUMPING PITVIPERS (GENUS ATROPOIDES) AND<br>PHYLOGEOGRAPHY OF THE ATROPOIDES NUMMIFER COMPLEX. Herpetologica, 2003, 59, 420-431.                                                     | 0.2               | 32                  |
| 108 | USING MORPHOLOGICAL AND MOLECULAR EVIDENCE TO INFER SPECIES BOUNDARIES WITHIN<br>PROCTOPORUS BOLIVIANUS WERNER (SQUAMATA: GYMNOPHTHALMIDAE). Herpetologica, 2003, 59,<br>432-449.                                                 | 0.2               | 29                  |

| #   | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The Hemipenes of Some Snakes of the Semifossorial Genus Atractus, with Comments on Variation in the Genus. Journal of Herpetology, 2003, 37, 718-721.                                                                                                                                  | 0.2 | 17        |
| 110 | Higher-level phylogeny of Asian and American coralsnakes, their placement within the Elapidae<br>(Squamata), and the systematic affinities of the enigmatic Asian coralsnake Hemibungarus calligaster<br>(Wiegmann, 1834). Zoological Journal of the Linnean Society, 0, 151, 809-831. | 1.0 | 50        |