
Juan José Villaverde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5225293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Native Lignin Structure of <i>Miscanthus x giganteus</i> and Its Changes during Acetic and Formic Acid Fractionation. Journal of Agricultural and Food Chemistry, 2009, 57, 6262-6270.	2.4	176
2	Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Management Science, 2014, 70, 2-5.	1.7	133
3	Supercritical fluid extraction of phenolic compounds from Eucalyptus globulus Labill bark. Journal of Supercritical Fluids, 2012, 71, 71-79.	1.6	107
4	Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis×E.) Tj ETQqO 0 0	rgBT /Ove 2.5	rlock 10 Tf 5
5	Trends in analysis of pesticide residues to fulfil the European Regulation (EC) No. 1107/2009. TrAC - Trends in Analytical Chemistry, 2016, 80, 568-580.	5.8	83
6	Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Science of the Total Environment, 2018, 634, 1530-1539.	3.9	74
7	Biopesticides from Natural Products: Current Development, Legislative Framework, and Future Trends. BioResources, 2016, 11, .	0.5	67
8	Phenolic composition and antioxidant activity of industrial cork by-products. Industrial Crops and Products, 2013, 47, 262-269.	2.5	65
9	Delignification of Eucalyptus globulus saplings in two organosolv systems (formic and acetic acid). Industrial Crops and Products, 2008, 27, 110-117.	2.5	58
10	Lipophilic phytochemicals from banana fruits of several Musa species. Food Chemistry, 2014, 162, 247-252.	4.2	52
11	Miscanthus x giganteus Extractives: A Source of Valuable Phenolic Compounds and Sterols. Journal of Agricultural and Food Chemistry, 2009, 57, 3626-3631.	2.4	47
12	Photolysis of clethodim herbicide and a formulation in aquatic environments: Fate and ecotoxicity assessment of photoproducts by QSAR models. Science of the Total Environment, 2018, 615, 643-651.	3.9	44
13	Formic and acetic acid as agents for a cleaner fractionation of Miscanthus x giganteus. Journal of Cleaner Production, 2010, 18, 395-401.	4.6	43
14	Delignification of Miscanthus×Giganteus by the Milox process. Bioresource Technology, 2010, 101, 3188-3193.	4.8	39
15	Computational Methodologies for the Risk Assessment of Pesticides in the European Union. Journal of Agricultural and Food Chemistry, 2017, 65, 2017-2018.	2.4	33
16	Deeper insight into the monoterpenic composition of Ferula gummosa oleo-gum-resin from Iran. Industrial Crops and Products, 2012, 36, 500-507.	2.5	31
17	Lipophilic extractives from the bark of Eucalyptus grandis x globulus, a rich source of methyl morolate: Selective extraction with supercritical CO2. Industrial Crops and Products, 2013, 43, 340-348.	2.5	31

18High valuable compounds from the unripe peel of several Musa species cultivated in Madeira Island
(Portugal). Industrial Crops and Products, 2013, 42, 507-512.2.529

#	Article	IF	CITATIONS
19	Secondary metabolites from Eucalyptus grandis wood cultivated in Portugal, Brazil and South Africa. Industrial Crops and Products, 2017, 95, 357-364.	2.5	28
20	QSAR/QSPR models based on quantum chemistry for risk assessment of pesticides according to current European legislation. SAR and QSAR in Environmental Research, 2020, 31, 49-72.	1.0	27
21	Mild peroxyformic acid fractionation of Miscanthus×giganteus bark. Behaviour and structural characterization of lignin. Industrial Crops and Products, 2012, 35, 261-268.	2.5	26
22	Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up. Chemical Engineering Journal, 2013, 217, 82-90.	6.6	26
23	Assessment of the sesquiterpenic profile of Ferula gummosa oleo-gum-resin (galbanum) from Iran. Contributes to its valuation as a potential source of sesquiterpenic compounds. Industrial Crops and Products, 2013, 44, 185-191.	2.5	26
24	Pulping cardoon (Cynara cardunculus) with peroxyformic acid (MILOX) in one single stage. Bioresource Technology, 2008, 99, 5687-5693.	4.8	25
25	Industrial potential of lipoxygenases. Critical Reviews in Biotechnology, 2016, 36, 665-674.	5.1	23
26	Quantum chemistry in environmental pesticide risk assessment. Pest Management Science, 2017, 73, 2199-2202.	1.7	21
27	Acetosolv delignification of depithed cardoon (Cynara cardunculus) stalks. Industrial Crops and Products, 2007, 25, 294-300.	2.5	20
28	Challenges of Biopesticides Under the European Regulation (EC) No. 1107/2009. Studies in Natural Products Chemistry, 2014, 43, 437-482.	0.8	18
29	Bleaching Miscanthus x giganteus Acetosolv pulps with hydrogen peroxide/acetic acid. Part 1: Behaviour in aqueous alkaline media. Bioresource Technology, 2009, 100, 4731-4735.	4.8	16
30	Cloned Pseudomonas aeruginosa lipoxygenase as efficient approach for the clean conversion of linoleic acid into valuable hydroperoxides. Chemical Engineering Journal, 2013, 231, 519-525.	6.6	16
31	Computational-Based Study of QuEChERS Extraction of Cyclohexanedione Herbicide Residues in Soil by Chemometric Modeling. Molecules, 2018, 23, 2009.	1.7	15
32	Miscanthus x giganteus Bark Organosolv Fractionation: Fate of Lipophilic Components and Formation of Valuable Phenolic Byproducts. Journal of Agricultural and Food Chemistry, 2010, 58, 8279-8285.	2.4	13
33	Assessing the Effects of Alloxydim Phototransformation Products by QSAR Models and a Phytotoxicity Study. Molecules, 2018, 23, 993.	1.7	12
34	Analysis of linoleic acid hydroperoxides generated by biomimetic and enzymatic systems through an integrated methodology. Industrial Crops and Products, 2011, 34, 1474-1481.	2.5	10
35	An overview of nanopesticides in the framework of European legislation. , 2017, , 227-271.		9
36	Pesticide byproducts formation: Theoretical study of the protonation of alloxydim degradation products. Computational and Theoretical Chemistry, 2018, 1143, 9-19.	1.1	8

#	Article	IF	CITATIONS
37	Formation of oligomeric alkenylperoxides during the oxidation of unsaturated fatty acids: an electrospray ionization tandem mass spectrometry study. Journal of Mass Spectrometry, 2012, 47, 163-172.	0.7	7
38	Fractionation of Miscanthus x giganteus via modification of the Formacell process. Industrial Crops and Products, 2015, 77, 275-281.	2.5	7
39	Computational Study of the Structure and Degradation Products of Alloxydim Herbicide. Journal of Physical Chemistry A, 2018, 122, 3909-3918.	1.1	7
40	Applicability of Short Totally Chlorine Free Bleaching Sequences to Miscanthus x giganteus Organosolv Pulps. Industrial & Engineering Chemistry Research, 2011, 50, 9847-9851.	1.8	6
41	Bleaching <i>Miscanthus</i> x <i>giganteus</i> Acetosolv <i></i> Pulps with a New Totally Chlorine-free Sequence and the Effect of Carbohydrate Protectors. Industrial & Engineering Chemistry Research, 2009, 48, 9830-9836.	1.8	5
42	A study using QSAR/QSPR models focused on the possible occurrence and risk of alloxydim residues from chlorinated drinking water, according to the EU Regulation. Science of the Total Environment, 2022, 839, 156000.	3.9	4
43	Contributions of Computer-Based Chemical Modeling Technologies on the Risk Assessment and the Environmental Fate Study of (Nano)pesticides. , 2020, , 1-27.		3