
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/522521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reflection infrared spectroscopy for the non-invasive in situ study of artists' pigments. Applied Physics A: Materials Science and Processing, 2012, 106, 295-307.	1.1	210
2	In Situ Noninvasive Study of Artworks: The MOLAB Multitechnique Approach. Accounts of Chemical Research, 2010, 43, 728-738.	7.6	180
3	The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chemical Communications, 2009, , 3392.	2.2	150
4	A spectrophotometric and fluorimetric study of some anthraquinoid and indigoid colorants used in artistic paintings. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 581-588.	2.0	128
5	Particle-modified consolidants: A study on the effect of particles on sol–gel properties and consolidation effectiveness. Journal of Cultural Heritage, 2007, 8, 1-6.	1.5	127
6	FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings. Analytical and Bioanalytical Chemistry, 2009, 395, 2107-2118.	1.9	127
7	Fluorescence Spectroscopy: A Powerful Technique for the Noninvasive Characterization of Artwork. Accounts of Chemical Research, 2010, 43, 837-846.	7.6	127
8	Vibrational and electronic properties of painting lakes. Applied Physics A: Materials Science and Processing, 2008, 92, 25-33.	1.1	118
9	Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst, The, 2013, 138, 4838.	1.7	117
10	Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Synchrotron X-ray Spectromicroscopy and Related Methods. 1. Artificially Aged Model Samples. Analytical Chemistry, 2011, 83, 1214-1223.	3.2	116
11	Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Synchrotron X-ray Spectromicroscopy and Related Methods. 2. Original Paint Layer Samples. Analytical Chemistry, 2011, 83, 1224-1231.	3.2	116
12	Acidichromic effects in 1,2-di- and 1,2,4-tri- hydroxyanthraquinones. A spectrophotometric and fluorimetric study. , 2000, 13, 141-150.		103
13	Raman scattering features of lead pyroantimonate compounds. Part I: XRD and Raman characterization of Pb ₂ Sb ₂ O ₇ doped with tin and zinc. Journal of Raman Spectroscopy, 2009, 40, 107-111.	1.2	103
14	Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. 3. Synthesis, Characterization, and Detection of Different Crystal Forms of the Chrome Yellow Pigment. Analytical Chemistry, 2013, 85, 851-859.	3.2	92
15	Non-invasive identification of surface materials on marble artifacts with fiber optic mid-FTIR reflectance spectroscopy. Talanta, 2006, 69, 1221-1226.	2.9	84
16	A non-invasive XRF study supported by multivariate statistical analysis and reflectance FTIR to assess the composition of modern painting materials. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 71, 1655-1662.	2.0	82
17	Raman scattering features of lead pyroantimonate compounds: implication for the nonâ€invasive identification of yellow pigments on ancient ceramics. Part II. <i>In situ</i> characterisation of Renaissance plates by portable microâ€Raman and XRF studies. Journal of Raman Spectroscopy, 2011, 42, 407-414.	1.2	81
18	Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 116, 270-280.	2.0	78

#	Article	IF	CITATIONS
19	Spectroscopic investigation of yellow majolica glazes. Journal of Raman Spectroscopy, 2004, 35, 61-67.	1.2	77
20	In-situ identification of copper-based green pigments on paintings and manuscripts by reflection FTIR. Analytical and Bioanalytical Chemistry, 2013, 405, 2699-2711.	1.9	77
21	Application of the Kubelka—Munk Correction for Self-Absorption of Fluorescence Emission in Carmine Lake Paint Layers. Applied Spectroscopy, 2009, 63, 1323-1330.	1.2	75
22	Noninvasive Analysis of Paintings by Midâ€infrared Hyperspectral Imaging. Angewandte Chemie - International Edition, 2013, 52, 5258-5261.	7.2	75
23	Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering. Applied Surface Science, 2007, 253, 4477-4484.	3.1	74
24	Microanalytical identification of Pb-Sb-Sn yellow pigment in historical European paintings and its differentiation from lead tin and Naples yellows. Journal of Cultural Heritage, 2007, 8, 377-386.	1.5	72
25	An integrated spectroscopic approach for the non-invasive study of modern art materials and techniques. Applied Physics A: Materials Science and Processing, 2010, 100, 613-624.	1.1	72
26	Non-invasive identification of organic materials in wall paintings by fiber optic reflectance infrared spectroscopy: a statistical multivariate approach. Analytical and Bioanalytical Chemistry, 2009, 395, 2097-2106.	1.9	70
27	On the Use of Overtone and Combination Bands for the Analysis of the CaSO ₄ —H ₂ O System by Mid-Infrared Reflection Spectroscopy. Applied Spectroscopy, 2010, 64, 956-963.	1.2	69
28	Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. 4. Artificial Aging of Model Samples of Co-Precipitates of Lead Chromate and Lead Sulfate. Analytical Chemistry, 2013, 85, 860-867.	3.2	69
29	A detachable SERS active cellulose film: a minimally invasive approach to the study of painting lakes. Journal of Raman Spectroscopy, 2011, 42, 1932-1938.	1.2	68
30	UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd 1â^'x Zn x S solid solutions in cadmium yellow pigments. Microchemical Journal, 2016, 124, 856-867.	2.3	68
31	Fiber-Optic Fourier Transform Mid-Infrared Reflectance Spectroscopy: A Suitable Technique for in Situ Studies of Mural Paintings. Applied Spectroscopy, 2007, 61, 293-299.	1.2	65
32	The Use of Synchrotron Radiation for the Characterization of Artists' Pigments and Paintings. Annual Review of Analytical Chemistry, 2013, 6, 399-425.	2.8	63
33	Interpretation of mid and near-infrared reflection properties of synthetic polymer paints for the non-invasive assessment of binding media in twentieth-century pictorial artworks. Microchemical Journal, 2016, 124, 898-908.	2.3	63
34	Noninvasive nuclear magnetic resonance profiling of painting layers. Applied Physics Letters, 2008, 93, 033505.	1.5	62
35	Non-invasive in-situ investigations versus micro-sampling: a comparative study on a Renoirs painting. Applied Physics A: Materials Science and Processing, 2007, 89, 849-856.	1.1	61
36	Theoretical and experimental investigation on the spectroscopic properties of indigo dye. Journal of Molecular Structure, 2011, 993, 43-51.	1.8	61

#	Article	IF	CITATIONS
37	Revealing the Nature and Distribution of Metal Carboxylates in Jackson Pollock's <i>Alchemy</i> (1947) by Micro-Attenuated Total Reflection FT-IR Spectroscopic Imaging. Analytical Chemistry, 2017, 89, 1283-1289.	3.2	59
38	Identification of nineteenth century blue and green pigments byin situ x-ray fluorescence and micro-Raman spectroscopy. Journal of Raman Spectroscopy, 2004, 35, 610-615.	1.2	58
39	CO2 entrapment in natural ultramarine blue. Chemical Physics Letters, 2008, 466, 148-151.	1.2	58
40	Raman study of different crystalline forms of PbCrO ₄ and PbCr _{1â^'x} S _x O ₄ solid solutions for the noninvasive identification of chrome yellows in paintings: a focus on works by Vincent van Gogh. Journal of Raman Spectroscopy, 2014, 45, 1034-1045.	1.2	58
41	Non-invasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience. Topics in Current Chemistry, 2016, 374, 10.	3.0	56
42	In situ fluorimetry: A powerful non-invasive diagnostic technique for natural dyes used in artefacts. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 64, 906-912.	2.0	53
43	Evidence for Degradation of the Chrome Yellows in Vanâ€Gogh's <i>Sunflowers</i> : A Study Using Noninvasive Inâ€Situ Methods and Synchrotronâ€Radiationâ€Based Xâ€ray Techniques. Angewandte Chemie - International Edition, 2015, 54, 13923-13927.	7.2	52
44	Portable Equipment for Luminescence Lifetime Measurements on Surfaces. Applied Spectroscopy, 2008, 62, 1395-1399.	1.2	50
45	The Perugino's palette: integration of an extendedin situ XRF study by Raman spectroscopy. Journal of Raman Spectroscopy, 2004, 35, 616-621.	1.2	49
46	Photophysical properties of alizarin and purpurin Al(III) complexes in solution and in solid state. Photochemical and Photobiological Sciences, 2011, 10, 1249-1254.	1.6	48
47	Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium. Microchemical Journal, 2016, 124, 272-282.	2.3	48
48	DFT/TDDFT investigation on the UV-vis absorption and fluorescence properties of alizarin dye. Physical Chemistry Chemical Physics, 2015, 17, 6374-6382.	1.3	47
49	Multivariate chemical mapping of pigments and binders in easel painting cross-sections by micro IR reflection spectroscopy. Analytical and Bioanalytical Chemistry, 2011, 399, 3133-3145.	1.9	46
50	Durability of the artificial calcium oxalate protective on two Florentine monuments. Journal of Cultural Heritage, 2007, 8, 186-192.	1.5	45
51	Identification of proteins in painting cross-sections by immunofluorescence microscopy. Analytical and Bioanalytical Chemistry, 2008, 392, 57-64.	1.9	45
52	Photoluminescence Properties of Zinc Oxide in Paints: A Study of the Effect of Self-Absorption and Passivation. Applied Spectroscopy, 2012, 66, 1233-1241.	1.2	45
53	Advances in Raman mapping of works of art. Journal of Raman Spectroscopy, 2010, 41, 1462-1467.	1.2	43
54	Material analyses of â€~Christ with singing and music-making Angels', a late 15th-C panel painting attributed to Hans Memling and assistants: Part I. non-invasive in situ investigations. Journal of Analytical Atomic Spectrometry, 2011, 26, 2216.	1.6	43

COSTANZA MILIANI

#	Article	IF	CITATIONS
55	Non-invasive and micro-destructive investigation of the Domus Aurea wall painting decorations. Analytical and Bioanalytical Chemistry, 2011, 401, 1815-1826.	1.9	43
56	CRONO: a fast and reconfigurable macro Xâ€ray fluorescence scanner for <i>inâ€situ</i> investigations of polychrome surfaces. X-Ray Spectrometry, 2017, 46, 297-302.	0.9	43
57	Unexpected chromogenic properties of 1,3,3-trimethylspiro(indoline-2,3â€2-[3H]naphtho [2,1-b][1,4]oxazine) in the solid phase: photochromism, piezochromism and acidichromism. New Journal of Chemistry, 2004, 28, 379-386.	1.4	42
58	Photochemistry of Artists' Dyes and Pigments: Towards Better Understanding and Prevention of Colour Change in Works of Art. Angewandte Chemie - International Edition, 2018, 57, 7324-7334.	7.2	42
59	X-ray absorption investigations of copper resinate blackening in a XV century Italian painting. Applied Physics A: Materials Science and Processing, 2008, 92, 243-250.	1.1	41
60	Colouring materials of pre-Columbian codices: non-invasive in situ spectroscopic analysis of the Codex Cospi. Journal of Archaeological Science, 2012, 39, 672-679.	1.2	41
61	Probing the chemistry of CdS paints in <i>The Scream</i> by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques. Science Advances, 2020, 6, eaay3514.	4.7	41
62	Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh. Journal of Analytical Atomic Spectrometry, 2015, 30, 613-626.	1.6	40
63	In-situ fluorimetry: A powerful non-invasive diagnostic technique for natural dyes used in artefacts. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 71, 2057-2062.	2.0	39
64	Modified Naples yellow in Renaissance majolica: study of Pb–Sb–Zn and Pb–Sb–Fe ternary pyroantimonates by X-ray absorption spectroscopy. Journal of Analytical Atomic Spectrometry, 2011, 26, 2500.	1.6	39
65	Complexation of apigenin and luteolin in weld lake: a DFT/TDDFT investigation. Physical Chemistry Chemical Physics, 2010, 12, 6672.	1.3	38
66	Unilateral NMR, 13C CPMAS NMR spectroscopy and micro-analytical techniques for studying the materials and state of conservation of an ancient Egyptian wooden sarcophagus. Analytical and Bioanalytical Chemistry, 2011, 399, 3117-3131.	1.9	36
67	In situ non-invasive investigation on the painting techniques of early Meissen Stoneware. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 587-592.	2.0	34
68	Microanalytical investigation of degradation issues in Byzantine wall paintings. Applied Physics A: Materials Science and Processing, 2008, 92, 143-150.	1.1	33
69	The Book of Kells: A non-invasive MOLAB investigation by complementary spectroscopic techniques. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 115, 330-336.	2.0	33
70	Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. Part 5. Effects of Nonoriginal Surface Coatings into the Nature and Distribution of Chromium and Sulfur Species in Chrome Yellow Paints. Analytical Chemistry, 2014, 86, 10804-10811.	3.2	32
71	Disclosing Jackson Pollock's palette in Alchemy (1947) by non-invasive spectroscopies. Heritage Science, 2016, 4, .	1.0	32
72	Spectroscopic study of acrylic resins in solid matrices. Surface and Coatings Technology, 2002, 151-152, 276-280.	2.2	30

#	Article	IF	CITATIONS
73	The application of in situ mid-FTIR fibre-optic reflectance spectroscopy and GC–MS analysis to monitor and evaluate painting cleaning. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 1182-1188.	2.0	30
74	Non-invasive investigation of a pre-Hispanic Maya screenfold book: the Madrid Codex. Journal of Archaeological Science, 2014, 42, 166-178.	1.2	28
75	Role of the Relative Humidity and the Cd/Zn Stoichiometry in the Photooxidation Process of Cadmium Yellows (CdS/Cd _{1â^'<i>x</i>} Zn _{<i>x</i>} S) in Oil Paintings. Chemistry - A European Journal, 2018, 24, 11584-11593.	1.7	27
76	Monitoring of optimized SERS active gel substrates for painting and paper substrates by unilateral NMR profilometry. Journal of Raman Spectroscopy, 2014, 45, 1153-1159.	1.2	26
77	Chromatographic and spectroscopic identification and recognition of ammoniacal cochineal dyes and pigments. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 162, 86-92.	2.0	26
78	Complementary use of Optical Coherence Tomography (OCT) and Reflection FTIR spectroscopy for in-situ non-invasive monitoring of varnish removal from easel paintings. Microchemical Journal, 2018, 138, 7-18.	2.3	26
79	Non-invasive multi-technique investigation of artworks: A new tool for on-the-spot data documentation and analysis. Journal of Cultural Heritage, 2013, 14, 23-30.	1.5	25
80	Scientific Investigation of an Important Corpus of Picasso Paintings in Antibes: New Insights into Technique, Condition, and Chronological Sequence. Journal of the American Institute for Conservation, 2013, 52, 184-204.	0.2	25
81	A vibrational spectroscopic and principal component analysis of triarylmethane dyes by comparative laboratory and portable instrumentation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 292-305.	2.0	25
82	Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light. Journal of Analytical Atomic Spectrometry, 2015, 30, 1500-1510.	1.6	25
83	Beyond the color: A structural insight to eosin-based lakes. Dyes and Pigments, 2017, 140, 297-311.	2.0	25
84	Shades of blue: non-invasive spectroscopic investigations of Maya blue pigments. From laboratory mock-ups to Mesoamerican codices. Heritage Science, 2020, 8, .	1.0	25
85	MOLAB [®] meets Persia: Non-invasive study of a sixteenth-century illuminated manuscript. Studies in Conservation, 2015, 60, S185-S192.	0.6	24
86	Analysis of chromophores in stained-glass windows using Visible Hyperspectral Imaging in-situ. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117378.	2.0	24
87	The combined use of lead–tin yellow type I and II on a canvas painting by Pietro Perugino. Journal of Cultural Heritage, 2007, 8, 65-68.	1.5	23
88	A Preliminary Evaluation of the Surfaces of Acrylic Emulsion Paint Films and the Effects of Wet-Cleaning Treatment by Atomic Force Microscopy (AFM). Studies in Conservation, 2011, 56, 216-230.	0.6	23
89	UV–Vis-NIR and microRaman spectroscopies for investigating the composition of ternary CdS 1â^'x Se x solid solutions employed as artists' pigments. Microchemical Journal, 2016, 125, 279-289.	2.3	23
90	Ancient encaustic: An experimental exploration of technology, ageing behaviour and approaches to analytical investigation. Microchemical Journal, 2018, 138, 472-487.	2.3	23

#	Article	IF	CITATIONS
91	Subtracted shifted Raman spectroscopy of organic dyes and lakes. Journal of Raman Spectroscopy, 2010, 41, 452-458.	1.2	22
92	Investigation on the process of lead white blackening by Raman spectroscopy, XRD and other methods: Study of Cimabue's paintings in Assisi. Vibrational Spectroscopy, 2018, 98, 41-49.	1.2	22
93	Damages Induced by Synchrotron Radiation-Based X-ray Microanalysis in Chrome Yellow Paints and Related Cr-Compounds: Assessment, Quantification, and Mitigation Strategies. Analytical Chemistry, 2020, 92, 14164-14173.	3.2	22
94	Study of Raman scattering and luminescence properties of orchil dye for its nondestructive identification on artworks. Journal of Raman Spectroscopy, 2013, 44, 1451-1456.	1.2	21
95	Surface enhanced Raman spectroscopic investigation of orchil dyed wool from <i>Roccella tinctoria</i> and <i>Lasallia pustulata</i> . Journal of Raman Spectroscopy, 2014, 45, 723-729.	1.2	21
96	Structural and electronic properties of the PbCrO ₄ chrome yellow pigment and of its light sensitive sulfate-substituted compounds. RSC Advances, 2016, 6, 36336-36344.	1.7	21
97	Microâ€Raman spectroscopic study of artificially aged natural and dyed wool. Journal of Raman Spectroscopy, 2008, 39, 638-645.	1.2	20
98	Laser cleaning of paintings: in situ optimization of operative parameters through non-invasive assessment by optical coherence tomography (OCT), reflection FT-IR spectroscopy and laser induced fluorescence spectroscopy (LIF). Heritage Science, 2019, 7, .	1.0	20
99	Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: from micro- to non-invasive FT-IR. Physical Sciences Reviews, 2019, 4, .	0.8	19
100	Oil-in-water microemulsions to solubilize acrylic copolymers: application in cultural heritage conservation. , 2001, , 63-67.		19
101	Surface morphology and composition of some "lustro―decorated fragments of ancient ceramics from Deruta (Central Italy). Applied Surface Science, 2000, 157, 112-122.	3.1	17
102	A new photo-functional material constituted by a spirooxazine supported on a zirconium diphosphonate fluoride. Journal of Materials Chemistry, 2002, 12, 2872-2878.	6.7	17
103	Evaluation of the effect of different paint cross section preparation methods on the performances of Fourier transformed infrared microscopy in total reflection mode. Microchemical Journal, 2013, 110, 314-319.	2.3	17
104	Assessment of a multi-technical non-invasive approach for the typology of inks, dyes and pigments in two 19th century's ancient manuscripts of Morocco. Vibrational Spectroscopy, 2014, 74, 47-56.	1.2	17
105	Disclosing the Binding Medium Effects and the Pigment Solubility in the (Photo)reduction Process of Chrome Yellows (PbCrO ₄ /PbCr _{1–<i>x</i>} S _{<i>x</i>} O ₄). ACS Omega, 2019. 4. 6607-6619.	1.6	17
106	The study of cyclododecane as a temporary coating for marble byÂNMR profilometry and FTIR reflectance spectroscopies. Applied Physics A: Materials Science and Processing, 2011, 104, 401-406.	1.1	16
107	Structural characterization of the glassy phase in majolica glazes by Raman spectroscopy: A comparison between Renaissance samples and replica processed at different temperatures. Journal of Non-Crystalline Solids, 2007, 353, 1054-1059.	1.5	15
108	Disclosing the composition of historical commercial felt-tip pens used in art by integrated vibrational spectroscopy and pyrolysis-gas chromatography/mass spectrometry. Journal of Cultural Heritage, 2019, 35, 242-253.	1.5	15

#	Article	IF	CITATIONS
109	Micro transflection on a metallic stick: an innovative approach of reflection infrared spectroscopy for minimally invasive investigation of painting varnishes. Analytical and Bioanalytical Chemistry, 2017, 409, 3187-3197.	1.9	14
110	New insights into the fading mechanism of Geranium lake in painting matrix― Dyes and Pigments, 2020, 181, 108600.	2.0	14
111	Molecular Fluorescence Imaging Spectroscopy for Mapping Low Concentrations of Red Lake Pigments: Vanâ€Gogh's Painting The Olive Orchard. Angewandte Chemie - International Edition, 2020, 59, 6046-6053.	7.2	14
112	Bleaching of red lake paints in encaustic mummy portraits. Applied Physics A: Materials Science and Processing, 2010, 100, 703-711.	1.1	13
113	A round robin exercise in archaeometry: analysis of a blind sample reproducing a seventeenth century pharmaceutical ointment. Analytical and Bioanalytical Chemistry, 2011, 401, 1847-1860.	1.9	13
114	Microâ€Raman and SER spectroscopy to unfold Lefranc's early organic pigment formulations. Journal of Raman Spectroscopy, 2016, 47, 1505-1513.	1.2	13
115	Tracking Metal Oxalates and Carboxylates on Painting Surfaces by Non-invasive Reflection Mid-FTIR Spectroscopy. Cultural Heritage Science, 2019, , 173-193.	0.3	13
116	Blackening of lead white: Study of model paintings. Journal of Raman Spectroscopy, 2020, 51, 1118-1126.	1.2	13
117	Tracing the biological origin of animal glues used in paintings through mitochondrial DNA analysis. Analytical and Bioanalytical Chemistry, 2011, 399, 2987-2995.	1.9	12
118	Photosensitization of photochromism of spiro-indoline-oxazines by camphorquinone. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 97, 45-52.	2.0	11
119	Monitoring of Pictorial Surfaces by midâ€FTIR Reflectance Spectroscopy: Evaluation of the Performance of Innovative Colloidal Cleaning Agents. Spectroscopy Letters, 2005, 38, 459-475.	0.5	11
120	Molecular and structural characterization of some violet phosphate pigments for their non-invasive identification in modern paintings. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 439-444.	2.0	11
121	Further Insight into Mesoamerican Paint Technology: Unveiling the Colour Palette of the Preâ€Columbian Codex Fejérváryâ€Mayer by Means of Nonâ€invasive Analysis. Archaeometry, 2018, 60, 797-8	31 ⁰ 4. ⁶	11
122	Single-sided NMR: a non-invasive diagnostic tool for monitoring swelling effects in paint films subjected to solvent cleaning. Analytical and Bioanalytical Chemistry, 2020, 412, 1063-1075.	1.9	11
123	The chemistry of making color in art. Journal of Cultural Heritage, 2021, 50, 188-210.	1.5	11
124	The role of relative humidity on crystallization of calcium carbonate from calcium acetoacetate precursor. Applied Surface Science, 2020, 506, 144768.	3.1	10
125	Identifying Brazilwood's Marker Component, Urolithin C, in Historical Textiles by Surface-Enhanced Raman Spectroscopy. Heritage, 2021, 4, 1415-1428.	0.9	10
126	A nonâ€invasive NMR relaxometric characterization of the cyclododecane–solvent system inside porous substrates. Magnetic Resonance in Chemistry, 2015, 53, 27-33.	1.1	9

COSTANZA MILIANI

4

#	Article	IF	CITATIONS
127	Discovering Giuseppe Capogrossi: Study of the Painting Materials in Three Works of Art Stored at Galleria Nazionale (Rome). Heritage, 2020, 3, 965-984.	0.9	9
128	An SERS analytical protocol for characterizing native Japanese plant extracts. Journal of Raman Spectroscopy, 2020, 51, 892-902.	1.2	9
129	Tyrian purple in archaeological textiles: DMF extraction and recrystallization for the Raman identification of precursors and derivatives. Journal of Raman Spectroscopy, 2017, 48, 744-749.	1.2	8
130	An integrated analytical study of crayons from the original art materials collection of the MUNCH museum in Oslo. Scientific Reports, 2021, 11, 7152.	1.6	8
131	New portable instrument for combined reflectance, time-resolved and steady-state luminescence measurements on works of art. Proceedings of SPIE, 2011, , .	0.8	7
132	Materials and Techniques of Twentieth Century Argentinean Murals. Procedia Chemistry, 2013, 8, 221-230.	0.7	6
133	Synchrotron radiation Ca K-edge 2D-XANES spectroscopy for studying the stratigraphic distribution of calcium-based consolidants applied in limestones. Scientific Reports, 2020, 10, 14337.	1.6	6
134	NMR spectroscopy and micro-analytical techniques for studying the constitutive materials and the state of conservation of an ancient Tapa barkcloth from Polynesia, is. Wallis. Journal of Cultural Heritage, 2020, 45, 379-388.	1.5	6
135	A non-invasive investigation of cyclododecane kinetics in porous matrices by near-infrared spectroscopy and NMR in-depth profilometry. Journal of Cultural Heritage, 2015, 16, 151-158.	1.5	5
136	A combined theoretical and experimental investigation of the electronic and vibrational properties of red lead pigment. Journal of Cultural Heritage, 2020, 46, 374-381.	1.5	5
137	Non-invasive reflection FT-IR spectroscopy for on-site detection of cleaning system residues on polychrome surfaces. Microchemical Journal, 2020, 157, 105033.	2.3	5
138	Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1â^'xSex) paints in renowned twentieth century paintings by state-of-the-art investigations at multiple length scales. European Physical Journal Plus, 2022, 137, 1.	1.2	5
139	New insights into the deterioration of TiO2 based oil paints: the effects of illumination conditions and surface interactions. Heritage Science, 2022, 10, .	1.0	5
140	Photochemistry and cultural heritage. What is the impact of light on works of art?. , 2011, , 256-284.		4
141	Mid-infrared hyperspectral imaging of painting materials. Proceedings of SPIE, 2013, , .	0.8	4
142	6. Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: frommicro- to non-invasive FT-IR. , 2020, , 121-150.		4
143	Molecular Fluorescence Imaging Spectroscopy for Mapping Low Concentrations of Red Lake Pigments: Vanâ€Gogh's Painting The Olive Orchard. Angewandte Chemie, 2020, 132, 6102-6109.	1.6	4

MOLAB, a Mobile Laboratory for In Situ Non-Invasive Studies in Arts and Archaeology. , 2007, , 453-460.

#	Article	IF	CITATIONS
145	Authentication and characterisation of pottery sherds from Apricena (FG). Thermochimica Acta, 1998, 321, 191-195.	1.2	3
146	Role of protolytic interactions in photo-aging processes of carminic acid and carminic lake in solution and painted layers. Perkin Transactions II RSC, 2002, , 192-197.	1.1	3
147	Dependence of the photoemission of amorphous silicon nitride thin films on their composition. Surface and Coatings Technology, 2002, 151-152, 268-271.	2.2	3
148	Raman Mapping in the Scientific Investigations of Works of Art. Springer Series in Optical Sciences, 2012, , 189-217.	0.5	3
149	Unveiling the composition of historical plastics through non-invasive reflection FT-IR spectroscopy in the extended near- and mid-Infrared spectral range. Analytica Chimica Acta, 2021, 1169, 338602.	2.6	3
150	Archaeometric study of Etruscan scarab gemstones by non-destructive chemical and topographical analysis. Journal of Archaeological Science: Reports, 2016, 8, 381-391.	0.2	2
151	The Degradation Process of Lead Chromate Yellows in Paintings by Vincent van Gogh. Microscopy and Microanalysis, 2013, 19, 1424-1425.	0.2	2
152	Microscale mechanochemical characterization of drying oil films by in situ correlative Brillouin and Raman spectroscopy. Science Advances, 2022, 8, .	4.7	2
153	Zur Photochemie von Künstlerfarben: Strategien zur Verhinderung von Farbveräderungen in Kunstwerken. Angewandte Chemie, 2018, 130, 7447-7457.	1.6	1
154	Fungal colonization on stoneworks. Interaction fungi-powdered stone samples. Annali Di Chimica, 2003, 93, 889-96.	0.6	1
155	Investigations of the Decorative Techniques and Conservation Condition of a Majolica Altar by Andrea della Robbia. Materials Research Society Symposia Proceedings, 2004, 852, 202.	0.1	0
156	Frontispiece: Role of the Relative Humidity and the Cd/Zn Stoichiometry in the Photooxidation Process of Cadmium Yellows (CdS/Cd _{1â^'<i>x</i>} Zn _{<i>x</i>} S) in Oil Paintings. Chemistry - A European Journal, 2018, 24, .	1.7	0