Christopher D Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5225198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multistep Synthesis Using Modular Flow Reactors: Bestmann–Ohira Reagent for the Formation of Alkynes and Triazoles. Angewandte Chemie - International Edition, 2009, 48, 4017-4021.	13.8	222
2	[3 + 2] Cycloaddition of acetylenes with azides to give 1,4-disubstituted 1,2,3-triazoles in a modular flow reactor. Organic and Biomolecular Chemistry, 2007, 5, 1559.	2.8	124
3	Fully Automated Continuous Flow Synthesis of 4,5-Disubstituted Oxazoles. Organic Letters, 2006, 8, 5231-5234.	4.6	120
4	A modular flow reactor for performing Curtius rearrangements as a continuous flow process. Organic and Biomolecular Chemistry, 2008, 6, 1577.	2.8	120
5	Azide monoliths as convenient flow reactors for efficient Curtius rearrangement reactions. Organic and Biomolecular Chemistry, 2008, 6, 1587.	2.8	115
6	Zinc Mediated Azide–Alkyne Ligation to 1,5- and 1,4,5-Substituted 1,2,3-Triazoles. Organic Letters, 2013, 15, 4826-4829.	4.6	111
7	A flow reactor process for the synthesis of peptides utilizing immobilized reagents, scavengers and catch and release protocols. Chemical Communications, 2006, , 4835.	4.1	93
8	Flow synthesis of organic azides and the multistep synthesis of imines and amines using a new monolithic triphenylphosphine reagent. Organic and Biomolecular Chemistry, 2011, 9, 1927.	2.8	91
9	Shape-controlled continuous synthesis of metal nanostructures. Nanoscale, 2016, 8, 7534-7543.	5.6	74
10	Tagged phosphine reagents to assist reaction work-up by phase-switched scavenging using a modular flow reactor. Organic and Biomolecular Chemistry, 2007, 5, 1562.	2.8	56
11	A Bifurcated Pathway to Thiazoles and Imidazoles Using a Modular Flow Microreactor. ACS Combinatorial Science, 2008, 10, 851-857.	3.3	48
12	Kinetics analysis and automated online screening of aminocarbonylation of aryl halides in flow. Reaction Chemistry and Engineering, 2016, 1, 272-279.	3.7	32
13	Synthesis of linked heterocycles via use of bis-acetylenic compounds. Tetrahedron Letters, 2006, 47, 3209-3212.	1.4	31
14	Methyl Hydrazinocarboxylate as a Practical Alternative to Hydrazine in the Wolff–Kishner Reaction. Synlett, 2015, 27, 131-135.	1.8	15
15	Investigation of Petasis and Ugi reactions in series in an automated microreactor system. RSC Advances, 2014, 4, 63627-63631.	3.6	12
16	Combining C-H functionalisation and flow photochemical heterocyclic metamorphosis (FP-HM) for the synthesis of benzo[1,3]oxazepines. Tetrahedron, 2018, 74, 5351-5357.	1.9	9
17	Organic Chemistry in Microreactors. , 0, , 59-209.		7
18	A Homocoupling Approach to the Key Dione of CyMe4-BTPhen – Vital Ligands for Nuclear Clean-Up by the SANEX Process. SynOpen, 2022, 06, 16-18.	1.7	0