Yuan Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5223545/publications.pdf Version: 2024-02-01

ΥΠΑΝ ΖΗΠ

#	Article	IF	CITATIONS
1	Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12640-12645.	7.1	172
2	Regulation of β1 Integrin-Klf2-Mediated Angiogenesis by CCM Proteins. Developmental Cell, 2015, 32, 181-190.	7.0	127
3	Loss of <scp>CCM</scp> 3 impairs <scp>DLL</scp> 4â€Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. Journal of Cellular and Molecular Medicine, 2013, 17, 407-418.	3.6	75
4	Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness. BMC Cancer, 2015, 15, 793.	2.6	68
5	Differential angiogenesis function of CCM2 and CCM3 in cerebral cavernous malformations. Neurosurgical Focus, 2010, 29, E1.	2.3	64
6	Implication of PTEN in production of reactive oxygen species and neuronal death in in vitro models of stroke and Parkinson's disease. Neurochemistry International, 2007, 50, 507-516.	3.8	56
7	Correlation of the venous angioarchitecture of multiple cerebral cavernous malformations with familial or sporadic disease: a susceptibility-weighted imaging study with 7-Tesla MRI. Journal of Neurosurgery, 2017, 126, 570-577.	1.6	52
8	Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme. Neuro-Oncology, 2013, 15, 1366-1378.	1.2	44
9	Solitary Sporadic Cerebral Cavernous Malformations: Risk Factors of First or Recurrent Symptomatic Hemorrhage and Associated Functional Impairment. World Neurosurgery, 2016, 91, 73-80.	1.3	33
10	Outcome after conservative management or surgical treatment for new-onset epilepsy in cerebral cavernous malformation. Journal of Neurosurgery, 2017, 126, 1303-1311.	1.6	33
11	MicroRNA-146b, a Sensitive Indicator of Mesenchymal Stem Cell Repair of Acute Renal Injury. Stem Cells Translational Medicine, 2016, 5, 1406-1415.	3.3	32
12	Study of angiogenic signaling pathways in hemangioblastoma. Neuropathology, 2017, 37, 3-11.	1.2	32
13	Hemorrhage from cerebral cavernous malformations. Neurology, 2020, 95, e89-e96.	1.1	31
14	Involvement of PTEN Promoter Methylation in Cerebral Cavernous Malformations. Stroke, 2009, 40, 820-826.	2.0	30
15	Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth. Neuro-Oncology, 2016, 18, 538-548.	1.2	30
16	EphB4 forward signalling mediates angiogenesis caused by <i><scp>CCM</scp>3/<scp>PDCD</scp>10</i> â€ablation. Journal of Cellular and Molecular Medicine, 2017, 21, 1848-1858.	3.6	30
17	In Vitro Characterization of the Angiogenic Phenotype and Genotype of the Endothelia Derived From Sporadic Cerebral Cavernous Malformations. Neurosurgery, 2011, 69, 722-732.	1.1	23
18	Downregulation of programmed cell death 10 is associated with tumor cell proliferation, hyperangiogenesis and peritumoral edema in human glioblastoma. BMC Cancer, 2015, 15, 759.	2.6	22

Yuan Zhu

#	Article	IF	CITATIONS
19	The functional <i>Aquaporin 1</i> â^783G/C-polymorphism is associated with survival in patients with glioblastoma multiforme. Journal of Surgical Oncology, 2013, 108, 492-498.	1.7	15
20	Modifiable Cardiovascular Risk Factors in Patients With Sporadic Cerebral Cavernous Malformations. Stroke, 2021, 52, 1259-1264.	2.0	15
21	Mutagenicity and estrogenicity of raw water and drinking water in an industrialized city in the Yangtze River Delta. Chemosphere, 2017, 185, 647-655.	8.2	14
22	The predominant expression of cancer stem cell marker ALDH1A3 in tumor infiltrative area is associated with shorter overall survival of human glioblastoma. BMC Cancer, 2020, 20, 672.	2.6	12
23	Phosphatase and tensin homolog in cerebral cavernous malformation: a potential role in pathological angiogenesis. Journal of Neurosurgery, 2009, 110, 530-539.	1.6	11
24	PDCD10-Deficiency Promotes Malignant Behaviors and Tumor Growth via Triggering EphB4 Kinase Activity in Glioblastoma. Frontiers in Oncology, 2020, 10, 1377.	2.8	9
25	Loss of programmed cell death 10 activates tumor cells and leads to temozolomide-resistance in glioblastoma. Journal of Neuro-Oncology, 2019, 141, 31-41.	2.9	8
26	Extracellular regulated protein kinases 1/2 phosphorylation is required for hepatic differentiation of human umbilical cord-derived mesenchymal stem cells. Experimental Biology and Medicine, 2015, 240, 534-545.	2.4	7
27	Characterization of Temozolomide Resistance Using a Novel Acquired Resistance Model in Glioblastoma Cell Lines. Cancers, 2022, 14, 2211.	3.7	7
28	Activation of multiple angiogenic signaling pathways in hemangiopericytoma. Brain Tumor Pathology, 2016, 33, 200-208.	1.7	6
29	Multiple cerebral arterio-venous malformations: impact of multiplicity and hemodynamics on treatment strategies. Acta Neurochirurgica, 2016, 158, 2399-2407.	1.7	5
30	Cerebral cavernous malformations do not fall in the spectrum of PIK3CA-related overgrowth. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 808-815.	1.9	5
31	Ischemia-induced inflammation in arteriovenous malformations. Neurosurgical Focus, 2022, 53, E3.	2.3	2
32	Prognostic factors for cerebral infraction and outcome in patients with intracranial aneurysm. Surgical Practice, 2012, 16, 94-102.	0.2	0
33	DNA promoter methylation of CCM genes in human cerebral cavernous malformations: Importance of confirming MSP data through sequencing. European Journal of Medical Genetics, 2020, 63, 104090.	1.3	0