List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/522307/publications.pdf Version: 2024-02-01



Διβλ Μλαίδ

| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Phenol metabolic fingerprint and selection of intake biomarkers after acute and sustained<br>consumption of red-fleshed apple versus common apple in humans. The AppleCOR study. Food<br>Chemistry, 2022, 384, 132612.                                                               | 8.2 | 4         |
| 2  | Bioactive Compounds and Antioxidant Capacity in Pearling Fractions of Hulled, Partially Hull-Less and<br>Hull-Less Food Barley Genotypes. Foods, 2021, 10, 565.                                                                                                                      | 4.3 | 7         |
| 3  | Virgin Olive Oil Phenolic Compounds Modulate the HDL Lipidome in Hypercholesterolaemic Subjects: A<br>Lipidomic Analysis of the VOHF Study. Molecular Nutrition and Food Research, 2021, 65, e2001192.                                                                               | 3.3 | 12        |
| 4  | Postâ€anthesis thermal stress induces differential accumulation of bioactive compounds in fieldâ€grown<br>barley. Journal of the Science of Food and Agriculture, 2021, 101, 6496-6504.                                                                                              | 3.5 | 1         |
| 5  | Metabolic Fate and Cardiometabolic Effects of Phenolic Compounds from Redâ€Fleshed Apple in<br>Hypercholesterolemic Rats: A Comparative Study with Common Whiteâ€Fleshed Apple. The AppleCOR<br>Study. Molecular Nutrition and Food Research, 2021, 65, e2001225.                    | 3.3 | 10        |
| 6  | Variation in the Methylation of Caffeoylquinic Acids and Urinary Excretion of 3′â€methoxycinnamic<br>acidâ€4′â€Sulfate After Apple Consumption by Volunteers. Molecular Nutrition and Food Research, 2021,<br>65, e2100471.                                                          | 3.3 | 5         |
| 7  | Thermal and non-thermal processing of red-fleshed apple: how are (poly)phenol composition and bioavailability affected?. Food and Function, 2020, 11, 10436-10447.                                                                                                                   | 4.6 | 15        |
| 8  | Consumption evaluation of one apple flesh a day in the initial phases prior to<br>adenoma/adenocarcinoma in an azoxymethane rat colon carcinogenesis model. Journal of Nutritional<br>Biochemistry, 2020, 83, 108418.                                                                | 4.2 | 18        |
| 9  | Application of Dried Blood Spot Cards combined with liquid chromatography-tandem mass<br>spectrometry to determine eight fat-soluble micronutrients in human blood. Journal of<br>Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1152, 122247. | 2.3 | 2         |
| 10 | Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free<br>Radical Biology and Medicine, 2020, 154, 119-131.                                                                                                                                 | 2.9 | 8         |
| 11 | Berry-Enriched Diet in Salt-Sensitive Hypertensive Rats: Metabolic Fate of (Poly)Phenols and the Role of Gut Microbiota. Nutrients, 2019, 11, 2634.                                                                                                                                  | 4.1 | 22        |
| 12 | In vivo biotransformation of (poly)phenols and anthocyanins of red-fleshed apple and identification of intake biomarkers. Journal of Functional Foods, 2019, 55, 146-155.                                                                                                            | 3.4 | 24        |
| 13 | Endothelial Cells Deconjugate Resveratrol Metabolites to Free Resveratrol: A Possible Role in Tissue<br>Factor Modulation. Molecular Nutrition and Food Research, 2019, 63, e1800715.                                                                                                | 3.3 | 17        |
| 14 | Anthocyanin Tissue Bioavailability in Animals: Possible Implications for Human Health. A Systematic<br>Review. Journal of Agricultural and Food Chemistry, 2018, 66, 11531-11543.                                                                                                    | 5.2 | 56        |
| 15 | Validation of Dried Blood Spot Cards to Determine Apple Phenolic Metabolites in Human Blood and<br>Plasma After an Acute Intake of Redâ€Fleshed Apple Snack. Molecular Nutrition and Food Research, 2018,<br>62, e1800623.                                                           | 3.3 | 17        |
| 16 | Seasonal Variability of the Phytochemical Composition of New Red-Fleshed Apple Varieties Compared<br>with Traditional and New White-Fleshed Varieties. Journal of Agricultural and Food Chemistry, 2018,<br>66, 10011-10025.                                                         | 5.2 | 14        |
| 17 | Cardiovascular Benefits of Phenolâ€Enriched Virgin Olive Oils: New Insights from the Virgin Olive Oil<br>and HDL Functionality (VOHF) Study. Molecular Nutrition and Food Research, 2018, 62, e1800456.                                                                              | 3.3 | 32        |
| 18 | Brain uptake of hydroxytyrosol and its main circulating metabolites: Protective potential in neuronal cells. Journal of Functional Foods, 2018, 46, 110-117.                                                                                                                         | 3.4 | 38        |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hydroxytyrosol: Emerging Trends in Potential Therapeutic Applications. Current Pharmaceutical Design, 2018, 24, 2157-2179.                                                                                                                                   | 1.9 | 29        |
| 20 | Hydroxytyrosol and the Colonic Metabolites Derived from Virgin Olive Oil Intake Induce Cell Cycle<br>Arrest and Apoptosis in Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2017, 65,<br>6467-6476.                                         | 5.2 | 54        |
| 21 | Phytochemical Profiles of New Red-Fleshed Apple Varieties Compared with Traditional and New<br>White-Fleshed Varieties. Journal of Agricultural and Food Chemistry, 2017, 65, 1684-1696.                                                                     | 5.2 | 59        |
| 22 | Bioavailability of the ferulic acid-derived phenolic compounds of a rice bran enzymatic extract and their activity against superoxide production. Food and Function, 2017, 8, 2165-2174.                                                                     | 4.6 | 22        |
| 23 | Rice bran enzymatic extract, a source of ferulic acid, protects endothelial function and inhibits<br>NADPHox activity. Atherosclerosis, 2017, 263, e76-e77.                                                                                                  | 0.8 | 0         |
| 24 | Exploring the Colonic Metabolism of Grape and Strawberry Anthocyanins and Their in Vitro Apoptotic Effects in HT-29 Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2017, 65, 6477-6487.                                                     | 5.2 | 55        |
| 25 | Polyphenol rich olive oils improve lipoprotein particle atherogenic ratios and subclasses profile: A<br>randomized, crossover, controlled trial. Molecular Nutrition and Food Research, 2016, 60, 1544-1554.                                                 | 3.3 | 47        |
| 26 | Ferulic acid from rice bran enzymatic extract is responsible for antioxidant and anti-inflammatory activities. Atherosclerosis, 2016, 252, e97.                                                                                                              | 0.8 | 0         |
| 27 | Application of dried blood spot cards to determine olive oil phenols (hydroxytyrosol metabolites) in<br>human blood. Talanta, 2016, 159, 189-193.                                                                                                            | 5.5 | 11        |
| 28 | Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. Journal of Functional Foods, 2016, 25, 80-93.                                                                             | 3.4 | 56        |
| 29 | Stability and metabolism of Arbutus unedo bioactive compounds (phenolics and antioxidants) under in vitro digestion and colonic fermentation. Food Chemistry, 2016, 201, 120-130.                                                                            | 8.2 | 139       |
| 30 | Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids. Journal of Functional Foods, 2016, 22, 52-63.                                                                                                       | 3.4 | 76        |
| 31 | Understanding of human metabolic pathways of different sub-classes of phenols from Arbutus unedo<br>fruit after an acute intake. Food and Function, 2016, 7, 1700-1710.                                                                                      | 4.6 | 15        |
| 32 | Effect of daily intake of pomegranate juice on fecal microbiota and feces metabolites from healthy volunteers. Molecular Nutrition and Food Research, 2015, 59, 1942-1953.                                                                                   | 3.3 | 64        |
| 33 | Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic<br>Compounds: A Review. Molecules, 2015, 20, 17429-17468.                                                                                                  | 3.8 | 174       |
| 34 | Application of in vitro gastrointestinal digestion and colonic fermentation models to pomegranate<br>products (juice, pulp and peel extract) to study the stability and catabolism of phenolic compounds.<br>Journal of Functional Foods, 2015, 14, 529-540. | 3.4 | 137       |
| 35 | CHAPTER 10. Liquid Chromatography Coupled to Tandem Mass Spectrometry to Analyze Imidazole<br>Dipeptides. Food and Nutritional Components in Focus, 2015, , 191-213.                                                                                         | 0.1 | 1         |
| 36 | Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccesibility and bioavailability assessed by in vitro digestion and cell models. Food Chemistry, 2014, 149, 277-284.                                                              | 8.2 | 66        |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Optimisation and validation of analytical methods for the simultaneous extraction of antioxidants:<br>Application to the analysis of tomato sauces. Food Chemistry, 2014, 163, 234-243.                                                                                     | 8.2 | 19        |
| 38 | Faecal microbial metabolism of olive oil phenolic compounds: In vitro and in vivo approaches.<br>Molecular Nutrition and Food Research, 2014, 58, 1809-1819.                                                                                                                | 3.3 | 79        |
| 39 | Study of the Catabolism of Thyme Phenols Combining in Vitro Fermentation and Human Intervention.<br>Journal of Agricultural and Food Chemistry, 2014, 62, 10954-10961.                                                                                                      | 5.2 | 29        |
| 40 | Effect of the co-occurring components from olive oil and thyme extracts on the antioxidant status and its bioavailability in an acute ingestion in rats. Food and Function, 2014, 5, 740.                                                                                   | 4.6 | 25        |
| 41 | In vivo distribution and deconjugation of hydroxytyrosol phase II metabolites in red blood cells: A potential new target for hydroxytyrosol. Journal of Functional Foods, 2014, 10, 139-143.                                                                                | 3.4 | 26        |
| 42 | Gallic Acid Is an Active Component for the Anticarcinogenic Action of Grape Seed Procyanidins in Pancreatic Cancer Cells. Nutrition and Cancer, 2014, 66, 88-96.                                                                                                            | 2.0 | 35        |
| 43 | Impact of Various Factors on Pharmacokinetics of Bioactive Polyphenols: An Overview. Current Drug<br>Metabolism, 2014, 15, 62-76.                                                                                                                                           | 1.2 | 45        |
| 44 | Metabolite profiling of olive oil and thyme phenols after a sustained intake of two phenol-enriched<br>olive oils by humans: Identification of compliance markers. Food Research International, 2014, 65,<br>59-68.                                                         | 6.2 | 49        |
| 45 | Application of dried spot cards as a rapid sample treatment method for determining hydroxytyrosol<br>metabolites in human urine samples. Comparison with microelution solid-phase extraction. Analytical<br>and Bioanalytical Chemistry, 2013, 405, 9179-9192.              | 3.7 | 29        |
| 46 | Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. Journal of Chromatography A, 2013, 1292, 66-82.                                                                                                     | 3.7 | 141       |
| 47 | Biomarkers of food intake and metabolite differences between plasma and red blood cell matrices; a<br>human metabolomic profile approach. Molecular BioSystems, 2013, 9, 1411.                                                                                              | 2.9 | 23        |
| 48 | Distribution of procyanidins and their metabolites in rat plasma and tissues in relation to ingestion of procyanidin-enriched or procyanidin-rich cocoa creams. European Journal of Nutrition, 2013, 52, 1029-1038.                                                         | 3.9 | 56        |
| 49 | Flavanol metabolites distribute in visceral adipose depots after a long-term intake of grape seed proanthocyanidin extract in rats. British Journal of Nutrition, 2013, 110, 1411-1420.                                                                                     | 2.3 | 24        |
| 50 | Bioavailability of procyanidin dimers and trimers and matrix food effects in <i>in vitro</i> and <i>in vivo</i> models – CORRIGENDUM. British Journal of Nutrition, 2013, 109, 2308-2308.                                                                                   | 2.3 | 2         |
| 51 | Improved liquid-chromatography tandem mass spectrometry method for the determination of the<br>bioactive dipeptides, carnosine and anserine: Application to analysis in chicken broth. Talanta, 2012, 93,<br>293-300.                                                       | 5.5 | 13        |
| 52 | Development of a Phenol-Enriched Olive Oil with Both Its Own Phenolic Compounds and<br>Complementary Phenols from Thyme. Journal of Agricultural and Food Chemistry, 2012, 60, 3105-3112.                                                                                   | 5.2 | 56        |
| 53 | Impact of olive oil phenolic concentration on human plasmatic phenolic metabolites. Food Chemistry, 2012, 135, 2922-2929.                                                                                                                                                   | 8.2 | 69        |
| 54 | Validation of determination of plasma metabolites derived from thyme bioactive compounds by improved liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 905, 75-84. | 2.3 | 35        |

| #  | Article                                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake. Molecular Nutrition and Food Research, 2012, 56, 486-496.                                                                                                                                                          | 3.3 | 136       |
| 56 | Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chemistry, 2012, 130, 383-393.                                                                                                                                                                                    | 8.2 | 178       |
| 57 | A new hydroxytyrosol metabolite identified in human plasma: Hydroxytyrosol acetate sulphate. Food<br>Chemistry, 2012, 134, 1132-1136.                                                                                                                                                                                                      | 8.2 | 41        |
| 58 | Distribution of procyanidins and their metabolites in rat plasma and tissues after an acute intake of hazelnut extract. Food and Function, 2011, 2, 562.                                                                                                                                                                                   | 4.6 | 45        |
| 59 | Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model.<br>Food Chemistry, 2011, 124, 65-71.                                                                                                                                                                                                 | 8.2 | 134       |
| 60 | Metabolic pathways of the colonic metabolism of procyanidins (monomers and dimers) and alkaloids.<br>Food Chemistry, 2011, 126, 1127-1137.                                                                                                                                                                                                 | 8.2 | 46        |
| 61 | Rapid methods to determine procyanidins, anthocyanins, theobromine and caffeine in rat tissues by<br>liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical<br>Technologies in the Biomedical and Life Sciences, 2011, 879, 1519-1528.                                                                    | 2.3 | 40        |
| 62 | Bioavailability of phenols from a phenol-enriched olive oil. British Journal of Nutrition, 2011, 106, 1691-1701.                                                                                                                                                                                                                           | 2.3 | 86        |
| 63 | Pharmacokinetics and disposition of procyanidins metabolites in rats. FASEB Journal, 2011, 25, lb197.                                                                                                                                                                                                                                      | 0.5 | 0         |
| 64 | Rapid analysis of procyanidins and anthocyanins in plasma by microelution SPE and ultraâ€HPLC. Journal of Separation Science, 2010, 33, 2841-2853.                                                                                                                                                                                         | 2.5 | 61        |
| 65 | Comparative study of UPLC–MS/MS and HPLC–MS/MS to determine procyanidins and alkaloids in cocoa samples. Journal of Food Composition and Analysis, 2010, 23, 298-305.                                                                                                                                                                      | 3.9 | 95        |
| 66 | Organotypic co-culture system to study plant extract bioactivity on hepatocytes. Food Chemistry, 2010, 122, 775-781.                                                                                                                                                                                                                       | 8.2 | 18        |
| 67 | Digestion stability and evaluation of the metabolism and transport of olive oil phenols in the human small-intestinal epithelial Caco-2/TC7 cell line. Food Chemistry, 2010, 119, 703-714.                                                                                                                                                 | 8.2 | 75        |
| 68 | Bioavailability of procyanidin dimers and trimers and matrix food effects in <i>in vitro</i> and <i>in vivo</i> models. British Journal of Nutrition, 2010, 103, 944-952.                                                                                                                                                                  | 2.3 | 239       |
| 69 | Determination of procyanidins and their metabolites in plasma samples by improved liquid<br>chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies<br>in the Biomedical and Life Sciences, 2009, 877, 1169-1176.                                                                                    | 2.3 | 84        |
| 70 | Improved method for identifying and quantifying olive oil phenolic compounds and their metabolites<br>in human plasma by microelution solid-phase extraction plate and liquid chromatography–tandem<br>mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life<br>Sciences 2009, 877, 4097,4106 | 2.3 | 84        |
| 71 | Methods for Preparing Phenolic Extracts from Olive Cake for Potential Application as Food<br>Antioxidants. Journal of Agricultural and Food Chemistry, 2009, 57, 1463-1472.                                                                                                                                                                | 5.2 | 103       |
| 72 | Rapid Determination of Phenolic Compounds and Alkaloids of Carob Flour by Improved Liquid<br>Chromatography Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2009, 57,<br>7239-7244.                                                                                                                                  | 5.2 | 39        |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Effect of Fat Content on the Digestibility and Bioaccessibility of Cocoa Polyphenol by an in Vitro<br>Digestion Model. Journal of Agricultural and Food Chemistry, 2009, 57, 5743-5749.                                                                       | 5.2  | 159       |
| 74 | Sensitivity enhancement for the analysis of naproxen in tap water by solidâ€phase extraction coupled<br>inâ€line to capillary electrophoresis. Journal of Separation Science, 2008, 31, 872-880.                                                              | 2.5  | 33        |
| 75 | Improved liquid chromatography tandem mass spectrometry method for the determination of phenolic compounds in virgin olive oil. Journal of Chromatography A, 2008, 1214, 90-99.                                                                               | 3.7  | 121       |
| 76 | Obtention and Characterization of Phenolic Extracts from Different Cocoa Sources. Journal of Agricultural and Food Chemistry, 2008, 56, 9621-9627.                                                                                                            | 5.2  | 94        |
| 77 | Capillary electrophoresis for the analysis of non-steroidal anti-inflammatory drugs. TrAC - Trends in<br>Analytical Chemistry, 2007, 26, 133-153.                                                                                                             | 11.4 | 62        |
| 78 | Different sample stacking strategies to analyse some nonsteroidal anti-inflammatory drugs by<br>micellar electrokinetic capillary chromatography in mineral waters. Journal of Chromatography A,<br>2006, 1117, 234-245.                                      | 3.7  | 49        |
| 79 | Analysis of Nonsteroidal Anti-inflammatory Drugs in Water Samples Using Microemulsion<br>Electrokinetic Capillary Chromatography Under pH-Suppressed Electroosmotic Flow with an<br>On-Column Preconcentration Technique. Chromatographia, 2006, 63, 149-154. | 1.3  | 29        |
| 80 | Separation and on-column preconcentration of some nonsteroidal anti-inflammatory drugs by<br>microemulsion electrokinetic capillary chromatography using high-speed separations.<br>Electrophoresis, 2005, 26, 970-979.                                       | 2.4  | 39        |
| 81 | Application of capillary electrophoresis with different sample stacking strategies for the determination of a group of nonsteroidal anti-inflammatory drugs in the lowl¼g â^µâ€ŠLâ^1 concentration range. Electrophoresis, 2004, 25, 428-436.                 | 2.4  | 62        |
| 82 | Determination of some acidic drugs in surface and sewage treatment plant waters by capillary electrophoresis-electrospray ionization-mass spectrometry. Electrophoresis, 2004, 25, 3441-3449.                                                                 | 2.4  | 51        |
| 83 | Improving sensitivity by large-volume sample stacking using the electroosmotic flow pump to analyze some nonsteroidal anti-inflammatory drugs by capillary electrophoresis in water samples.<br>Electrophoresis, 2003, 24, 2779-2787.                         | 2.4  | 71        |