
Monica Bueno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5221981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update. TrAC - Trends in Analytical Chemistry, 2019, 116, 198-213.	5.8	184
2	Hansen solubility parameters for selection of green extraction solvents. TrAC - Trends in Analytical Chemistry, 2019, 118, 227-237.	5.8	86
3	Chiral analysis in food science. TrAC - Trends in Analytical Chemistry, 2020, 123, 115761.	5.8	65
4	Gas chromatographic–olfactometric characterisation of headspace and mouthspace key aroma compounds in fresh and frozen lamb meat. Food Chemistry, 2011, 129, 1909-1918.	4.2	63
5	Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO ₂ . Journal of Agricultural and Food Chemistry, 2015, 63, 10928-10937.	2.4	58
6	Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation. Journal of Agricultural and Food Chemistry, 2016, 64, 608-617.	2.4	58
7	Development of a robust HS-SPME-GC-MS method for the analysis of solid food samples. Analysis of volatile compounds in fresh raw beef of differing lipid oxidation degrees. Food Chemistry, 2019, 281, 49-56.	4.2	52
8	Key Changes in Wine Aroma Active Compounds during Bottle Storage of Spanish Red Wines under Different Oxygen Levels. Journal of Agricultural and Food Chemistry, 2014, 62, 10015-10027.	2.4	48
9	Pressurized Liquid Extraction. , 2020, , 375-398.		47
10	Simultaneous determination of free and bonded forms of odor-active carbonyls in wine using a headspace solid phase microextraction strategy. Journal of Chromatography A, 2014, 1369, 33-42.	1.8	46
11	Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation. Frontiers in Chemistry, 2018, 6, 20.	1.8	46
12	Ageing and retail display time in raw beef odour according to the degree of lipid oxidation. Food Chemistry, 2018, 242, 288-300.	4.2	45
13	Gas chromatography-mass spectrometry strategies for the accurate and sensitive speciation of sulfur dioxide in wine. Journal of Chromatography A, 2017, 1504, 27-34.	1.8	43
14	Chemical and sensory characterization of oxidative behavior in different wines. Food Research International, 2010, 43, 1423-1428.	2.9	41
15	Effect of freezing method and frozen storage duration on odor-active compounds and sensory perception of lamb. Food Research International, 2013, 54, 772-780.	2.9	38
16	<i>In vitro</i> neuroprotective potential of terpenes from industrial orange juice by-products. Food and Function, 2021, 12, 302-314.	2.1	38
17	A model explaining and predicting lamb flavour from the aroma-active chemical compounds released upon grilling light lamb loins. Meat Science, 2014, 98, 622-628.	2.7	35
18	Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts. Journal of Agricultural and Food Chemistry, 2015, 63, 10938-10947.	2.4	31

Monica Bueno

#	Article	IF	CITATIONS
19	Oxygen and SO ₂ Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition. Journal of Agricultural and Food Chemistry, 2017, 65, 9488-9495.	2.4	28
20	Green ultra-high pressure extraction of bioactive compounds from Haematococcus pluvialis and Porphyridium cruentum microalgae. Innovative Food Science and Emerging Technologies, 2020, 66, 102532.	2.7	26
21	Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods, 2021, 10, 1507.	1.9	25
22	Selectivity and efficiency of different reversed-phase and mixed-mode sorbents to preconcentrate and isolate aroma molecules. Journal of Chromatography A, 2010, 1217, 1557-1566.	1.8	23
23	A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition. Food Chemistry, 2018, 248, 37-45.	4.2	22
24	Compressed CO ₂ Technologies for the Recovery of Carotenoid-Enriched Extracts from <i>Dunaliella salina</i> with Potential Neuroprotective Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 11413-11423.	3.2	20
25	Green Compressed Fluid Technologies To Extract Antioxidants and Lipids from <i>Galdieria phlegrea</i> in a Biorefinery Approach. ACS Sustainable Chemistry and Engineering, 2020, 8, 2939-2947.	3.2	20
26	Recent advances in mass spectrometry studies of non-covalent complexes of macrocycles - A review. Analytica Chimica Acta, 2019, 1081, 32-50.	2.6	18
27	Use of high and ultra-high pressure based-processes for the effective recovery of bioactive compounds from Nannochloropsis oceanica microalgae. Journal of Supercritical Fluids, 2021, 167, 105039.	1.6	18
28	Phytosterol-rich compressed fluids extracts from Phormidium autumnale cyanobacteria with neuroprotective potential. Algal Research, 2021, 55, 102264.	2.4	14
29	Sensory Relevance of Strecker Aldehydes in Wines. Preliminary Studies of Its Removal with Different Type of Resins. Foods, 2021, 10, 1711.	1.9	7
30	Seasonal variation of chemical profile of Ruta graveolens extracts and biological activity against Fusarium oxysporum, Fusarium proliferatum and Stemphylium vesicarium. Biochemical Systematics and Ecology, 2021, 95, 104223.	0.6	5
31	New Insights into the Chemistry Involved in Aroma Development during Wine Bottle Aging: Slow Redox Processes and Chemical Equilibrium Shifts. ACS Symposium Series, 2015, , 275-289.	0.5	4
32	Downstream Green Processes for Recovery of Bioactives from Algae. Grand Challenges in Biology and Biotechnology, 2019, , 399-425.	2.4	3
33	Omics Technology: Foodomics. , 2018, , 53-53.		1
34	Hansen Solubility Parameters for Selection of Green Extraction Solvents. , 2021, , 710-724.		1
35	HPLC-DAD-APCI-MS as a Tool for Carotenoid Assessment of Wild and Cultivated Cherry Tomatoes. Horticulturae, 2021, 7, 272.	1.2	1
36	Compressed Fluids for Food By-product Biorefinery. Nanotechnology in the Life Sciences, 2020, , 219-238.	0.4	1