
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5221948/publications.pdf Version: 2024-02-01

FUZABETH & FULTON

#	Article	IF	CITATIONS
1	Deep aspirations: towards a sustainable offshore Blue Economy. Reviews in Fish Biology and Fisheries, 2022, 32, 209-230.	2.4	27
2	Ocean resource use: building the coastal blue economy. Reviews in Fish Biology and Fisheries, 2022, 32, 189-207.	2.4	57
3	Increasing the uptake of ecological model results in policy decisions to improve biodiversity outcomes. Environmental Modelling and Software, 2022, 149, 105318.	1.9	11
4	Lessons from bright-spots for advancing knowledge exchange at the interface of marine science and policy. Journal of Environmental Management, 2022, 314, 114994.	3.8	20
5	Matching biodiversity indicators to policy needs. Conservation Biology, 2021, 35, 522-532.	2.4	23
6	Energy Flow Through Marine Ecosystems: Confronting Transfer Efficiency. Trends in Ecology and Evolution, 2021, 36, 76-86.	4.2	70
7	Hot fish: The response to climate change by regional fisheries bodies. Marine Policy, 2021, 123, 104284.	1.5	23
8	Evaluating the potential for an increased and sustainable commercial fisheries production across multiple jurisdictions and diverse fisheries. Marine Policy, 2021, 124, 104353.	1.5	4
9	Opportunities to improve ecosystemâ€based fisheries management by recognizing and overcoming path dependency and cognitive bias. Fish and Fisheries, 2021, 22, 428-448.	2.7	26
10	Making spatial-temporal marine ecosystem modelling better – A perspective. Environmental Modelling and Software, 2021, 145, 105209.	1.9	26
11	Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 2021, 11, 973-981.	8.1	96
12	Responses of ecological indicators to fishing pressure under environmental change: exploring non-linearity and thresholds. ICES Journal of Marine Science, 2020, 77, 1516-1531.	1.2	19
13	Quantitative Foresighting as a Means of Improving Anticipatory Scientific Capacity and Strategic Planning. One Earth, 2020, 3, 631-644.	3.6	8
14	Contrasting Futures for Australia's Fisheries Stocks Under IPCC RCP8.5 Emissions – A Multi-Ecosystem Model Approach. Frontiers in Marine Science, 2020, 7, .	1.2	15
15	The Ocean Decade: A True Ecosystem Modeling Challenge. Frontiers in Marine Science, 2020, 7, .	1.2	46
16	A guide to ecosystem models and their environmental applications. Nature Ecology and Evolution, 2020, 4, 1459-1471.	3.4	90
17	Interacting forces of predation and fishing affect species' maturation size. Ecology and Evolution, 2020, 10, 14033-14051.	0.8	7
18	Principles for knowledge co-production in sustainability research. Nature Sustainability, 2020, 3, 182-190.	11.5	697

#	Article	IF	CITATIONS
19	To Achieve a Sustainable Blue Future, Progress Assessments Must Include Interdependencies between the Sustainable Development Goals. One Earth, 2020, 2, 161-173.	3.6	77
20	Expertise in research integration and implementation for tackling complex problems: when is it needed, where can it be found and how can it be strengthened?. Palgrave Communications, 2020, 6, .	4.7	81
21	Sectoral Futures Are Conditional on Choices of Global and National Scenarios – Australian Marine Examples. Frontiers in Marine Science, 2020, 7, .	1.2	4
22	Addressing initialisation uncertainty for end-to-end ecosystem models: application to the Chatham Rise Atlantis model. PeerJ, 2020, 8, e9254.	0.9	3
23	Progress in integrating natural and social science in marine ecosystem-based management research. Marine and Freshwater Research, 2019, 70, 71.	0.7	53
24	Identifying important species that amplify or mitigate the interactive effects of human impacts on marine food webs. Conservation Biology, 2019, 33, 403-412.	2.4	8
25	Defining global artisanal fisheries. Marine Policy, 2019, 108, 103634.	1.5	20
26	Ten tips for developing interdisciplinary socio-ecological researchers. Socio-Ecological Practice Research, 2019, 1, 149-161.	0.9	85
27	SIMA Austral: An operational information system for managing the Chilean aquaculture industry with international application. Journal of Operational Oceanography, 2019, 12, S29-S46.	0.6	7
28	Severe Continental-Scale Impacts of Climate Change Are Happening Now: Extreme Climate Events Impact Marine Habitat Forming Communities Along 45% of Australia's Coast. Frontiers in Marine Science, 2019, 6, .	1.2	106
29	<scp>Atlantis</scp> : A spatially explicit endâ€toâ€end marine ecosystem model with dynamically integrated physics, ecology and socioâ€economic modules. Methods in Ecology and Evolution, 2019, 10, 1814-1819.	2.2	54
30	Where the Ecological Gaps Remain, a Modelers' Perspective. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	27
31	Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Marine Policy, 2019, 108, 103639.	1.5	35
32	Food production shocks across land and sea. Nature Sustainability, 2019, 2, 130-137.	11.5	187
33	Using stable isotope data to advance marine food web modelling. Reviews in Fish Biology and Fisheries, 2019, 29, 277-296.	2.4	30
34	Evolution of global marine fishing fleets and the response of fished resources. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12238-12243.	3.3	115
35	Making ecological indicators management ready: Assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecological Indicators, 2019, 105, 16-28.	2.6	41
36	Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12907-12912.	3.3	357

#	Article	IF	CITATIONS
37	A practical framework for implementing and evaluating integrated management of marine activities. Ocean and Coastal Management, 2019, 177, 127-138.	2.0	73
38	Will fish be part of future healthy and sustainable diets?. Lancet Planetary Health, The, 2019, 3, e159-e160.	5.1	41
39	Fisheries sustainability relies on biological understanding, evidence-based management, and conducive industry conditions. ICES Journal of Marine Science, 2019, 76, 1436-1452.	1.2	4
40	How to Sustain Fisheries: Expert Knowledge from 34 Nations. Water (Switzerland), 2019, 11, 213.	1.2	16
41	The impact of fishing on a highly vulnerable ecosystem, the case of Juan Fernández Ridge ecosystem. PLoS ONE, 2019, 14, e0212485.	1.1	13
42	The ecological role of cephalopods and their representation in ecosystem models. Reviews in Fish Biology and Fisheries, 2019, 29, 313-334.	2.4	51
43	Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species. PLoS ONE, 2019, 14, e0210419.	1.1	33
44	Proactive, Reactive, and Inactive Pathways for Scientists in a Changing World. Earth's Future, 2019, 7, 60-73.	2.4	21
45	Ecosystems say good management pays off. Fish and Fisheries, 2019, 20, 66-96.	2.7	52
46	Scenarios and Models to Support Global Conservation Targets. Trends in Ecology and Evolution, 2019, 34, 57-68.	4.2	66
47	Decadal variability in sponge abundance and biodiversity on an Indo-Pacific coral reef. Marine Ecology - Progress Series, 2019, 620, 63-76.	0.9	13
48	Spawning stock recruitment creates misleading dynamics under predation release in ecosystem and multi-species models. PeerJ, 2019, 7, e7308.	0.9	2
49	The specificity of marine ecological indicators to fishing in the face of environmental change: A multi-model evaluation. Ecological Indicators, 2018, 89, 317-326.	2.6	58
50	Interdisciplinary knowledge exchange across scales in a globally changing marine environment. Global Change Biology, 2018, 24, 3039-3054.	4.2	18
51	Evaluating the effects of climate change in the southern Benguela upwelling system using the Atlantis modelling framework. Fisheries Oceanography, 2018, 27, 489-503.	0.9	31
52	Risky business: The combined effects of fishing and changes in primary productivity on fish communities. Ecological Modelling, 2018, 368, 265-276.	1.2	67
53	Improving Marine Ecosystem Models with Biochemical Tracers. Annual Review of Marine Science, 2018, 10, 199-228.	5.1	69
54	Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?. Estuarine, Coastal and Shelf Science, 2018, 204, 149-163.	0.9	19

#	Article	IF	CITATIONS
55	Applying a New Ensemble Approach to Estimating Stock Status of Marine Fisheries around the World. Conservation Letters, 2018, 11, e12363.	2.8	47
56	Identification of the main processes underlying ecosystem functioning in the Eastern English Channel, with a focus on flatfish species, as revealed through the application of the Atlantis end-to-end model. Estuarine, Coastal and Shelf Science, 2018, 201, 208-222.	0.9	21
57	Integrated ecological–economic fisheries models—Evaluation, review and challenges for implementation. Fish and Fisheries, 2018, 19, 1-29.	2.7	87
58	Considering land–sea interactions and tradeâ€offs for food and biodiversity. Global Change Biology, 2018, 24, 580-596.	4.2	39
59	Modelling the Great Australian Bight Ecosystem. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 157-158, 211-235.	0.6	15
60	The Baltic Sea Atlantis: An integrated end-to-end modelling framework evaluating ecosystem-wide effects of human-induced pressures. PLoS ONE, 2018, 13, e0199168.	1.1	30
61	Implementing Ecosystem-based Fisheries Management: Lessons from Chile's experience. Marine Policy, 2018, 97, 82-90.	1.5	11
62	Consequences of spatially variable ocean acidification in the California Current: Lower pH drives strongest declines in benthic species in southern regions while greatest economic impacts occur in northern regions. Ecological Modelling, 2018, 383, 106-117.	1.2	28
63	A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development, 2018, 11, 1421-1442.	1.3	116
64	Navigating the Great Australian Bight using system models. APPEA Journal, 2018, 58, 553.	0.4	0
65	Evaluating the specificity of ecosystem indicators to fishing in a changing environment: A model comparison study for the southern Benguela ecosystem. Ecological Indicators, 2018, 95, 85-98.	2.6	13
66	Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models. Frontiers in Marine Science, 2018, 5, .	1.2	45
67	SEAMANCORE: A spatially explicit simulation model for assisting the local MANagement of COral REefs. Ecological Modelling, 2018, 384, 296-307.	1.2	5
68	Climate change alterations to ecosystem dominance: how might spongeâ€dominated reefs function?. Ecology, 2018, 99, 1920-1931.	1.5	56
69	The emergence of social licence necessitates reforms in environmental regulation. Ecology and Society, 2018, 23, .	1.0	40
70	End-to-end model of Icelandic waters using the Atlantis framework: Exploring system dynamics and model reliability. Fisheries Research, 2018, 207, 9-24.	0.9	18
71	Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections. Global Change Biology, 2017, 23, 1525-1539.	4.2	107
72	The Impact of Land Use Change on Carbon Stored in Mountain Grasslands and Shrublands. Ecological Economics, 2017, 135, 114-124.	2.9	5

#	Article	IF	CITATIONS
73	Avoiding a crisis of motivation for ocean management under global environmental change. Global Change Biology, 2017, 23, 4483-4496.	4.2	21
74	An Atlantis model of the southern Benguela upwelling system: Validation, sensitivity analysis and insights into ecosystem functioning. Ecological Modelling, 2017, 355, 49-63.	1.2	20
75	Recreational fishing in a time of rapid ocean change. Marine Policy, 2017, 76, 169-177.	1.5	15
76	Integrated modelling to support decision-making for marine social–ecological systems in Australia. ICES Journal of Marine Science, 2017, 74, 2298-2308.	1.2	22
77	From data rich to data-limited harvest strategies—does more data mean better management?. ICES Journal of Marine Science, 2017, 74, 670-686.	1.2	21
78	Fisheries Science and Participatory Management Strategy Evaluation: Eliciting Objectives, Visions and System Models. , 2017, , 19-45.		2
79	Planetary boundaries for a blue planet. Nature Ecology and Evolution, 2017, 1, 1625-1634.	3.4	139
80	Knowledge that Acts: Evaluating the Outcomes of a Knowledge Brokering Intervention in Western Australia's Ningaloo Region. Environmental Management, 2017, 60, 896-907.	1.2	12
81	Improving understanding of the functional diversity of fisheries by exploring the influence of global catch reconstruction. Scientific Reports, 2017, 7, 10746.	1.6	11
82	Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature Ecology and Evolution, 2017, 1, 1240-1249.	3.4	161
83	Implementing marine ecosystem-based management: lessons from Australia. ICES Journal of Marine Science, 2017, 74, 1990-2003.	1.2	49
84	Effectiveness of lobster fisheries management in New Zealand and Nova Scotia from multi-species and ecosystem perspectives. ICES Journal of Marine Science, 2017, 74, 146-157.	1.2	6
85	Ecosystem indicators—accounting for variability in species' trophic levels. ICES Journal of Marine Science, 2017, 74, 158-169.	1.2	41
86	Strong fisheries management and governance positively impact ecosystem status. Fish and Fisheries, 2017, 18, 412-439.	2.7	54
87	Ecosystem effects of invertebrate fisheries. Fish and Fisheries, 2017, 18, 40-53.	2.7	52
88	The Future of Modeling to Support Conservation Decisions in the Anthropocene Ocean. , 2017, , 423-445.		2
89	Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management. PLoS ONE, 2016, 11, e0152577.	1.1	29
90	Assessing a multilevel tier system: The role and implications of data quality and availability. Fisheries Research, 2016, 183, 588-593.	0.9	7

#	Article	IF	CITATIONS
91	Is risk consistent across tierâ€based harvest control rule management systems? A comparison of four caseâ€studies. Fish and Fisheries, 2016, 17, 731-747.	2.7	23
92	A stitch in time saves nine…billion. Science, 2016, 354, 1530-1531.	6.0	3
93	Atlantis Ecosystem Model Summit: Report from a workshop. Ecological Modelling, 2016, 335, 35-38.	1.2	18
94	Developing priority variables ("ecosystem Essential Ocean Variables―— eEOVs) for observing dynamics and change in Southern Ocean ecosystems. Journal of Marine Systems, 2016, 161, 26-41.	0.9	89
95	Decision trade-offs for cost-constrained fisheries management. ICES Journal of Marine Science, 2016, 73, 494-502.	1.2	19
96	Exploring Lake Victoria ecosystem functioning using the Atlantis modeling framework. Environmental Modelling and Software, 2016, 86, 158-167.	1.9	30
97	Decadal-Scale Forecasting of Climate Drivers for Marine Applications. Advances in Marine Biology, 2016, 74, 1-68.	0.7	34
98	Predictions from simple predator-prey theory about impacts of harvesting forage fishes. Ecological Modelling, 2016, 337, 272-280.	1.2	52
99	A call for empirically based guidelines for building trust among stakeholders in environmental sustainability projects. Sustainability Science, 2016, 11, 855-859.	2.5	27
100	Integrating modelling of biodiversity composition and ecosystem function. Oikos, 2016, 125, 10-19.	1.2	32
101	Consensus management in Antarctica's high seas – Past success and current challenges. Marine Policy, 2016, 73, 172-180.	1.5	19
102	A changing marine sector in Australian coastal communities: An analysis of inter and intra sectoral industry connections and employment. Ocean and Coastal Management, 2016, 131, 1-12.	2.0	25
103	Developing risk equivalent data-rich and data-limited harvest strategies. Fisheries Research, 2016, 183, 574-587.	0.9	29
104	Fishery production potential of large marine ecosystems: A prototype analysis. Environmental Development, 2016, 17, 211-219.	1.8	22
105	Trends and management implications of humanâ€influenced lifeâ€history changes in marine ectotherms. Fish and Fisheries, 2016, 17, 1005-1028.	2.7	76
106	Empirical evidence for different cognitive effects in explaining the attribution of marine range shifts to climate change. ICES Journal of Marine Science, 2016, 73, 1306-1318.	1.2	20
107	Planning adaptation to climate change in fast-warming marine regions with seafood-dependent coastal communities. Reviews in Fish Biology and Fisheries, 2016, 26, 249-264.	2.4	61
108	Assumptions behind size-based ecosystem models are realistic. ICES Journal of Marine Science, 2016, 73, 1651-1655.	1.2	25

#	Article	IF	CITATIONS
109	Species traits and climate velocity explain geographic range shifts in an oceanâ€warming hotspot. Ecology Letters, 2015, 18, 944-953.	3.0	334
110	Citizens' Views of Australia's Future to 2050. Sustainability, 2015, 7, 222-247.	1.6	13
111	The impacts of fish body size changes on stock recovery: a case study using an Australian marine ecosystem model. ICES Journal of Marine Science, 2015, 72, 782-792.	1.2	10
112	Trade-offs between invertebrate fisheries catches and ecosystem impacts in coastal New Zealand. ICES Journal of Marine Science, 2015, 72, 1380-1388.	1.2	17
113	Modelling dynamic ecosystems: venturing beyond boundaries with the Ecopath approach. Reviews in Fish Biology and Fisheries, 2015, 25, 413-424.	2.4	73
114	A multi-model approach to engaging stakeholder and modellers in complex environmental problems. Environmental Science and Policy, 2015, 48, 44-56.	2.4	70
115	How models can support ecosystem-based management of coral reefs. Progress in Oceanography, 2015, 138, 559-570.	1.5	33
116	Identifying indicators and essential variables for marine ecosystems. Ecological Indicators, 2015, 57, 409-419.	2.6	60
117	When is a fishery sustainable?. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1433-1441.	0.7	99
118	Do marine ecosystem models give consistent policy evaluations? A comparison of Atlantis and Ecosim. Fisheries Research, 2015, 167, 293-312.	0.9	34
119	Using an Atlantis model of the southern Benguela to explore the response of ecosystem indicators for fisheries management. Environmental Modelling and Software, 2015, 69, 23-41.	1.9	22
120	Ecosystem modelling in the southern Benguela: comparisons of Atlantis, Ecopath with Ecosim, and OSMOSE under fishing scenarios. African Journal of Marine Science, 2015, 37, 65-78.	0.4	36
121	Emergent Properties Delineate Marine Ecosystem Perturbation and Recovery. Trends in Ecology and Evolution, 2015, 30, 649-661.	4.2	38
122	Modelling marine protected areas: insights and hurdles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140278.	1.8	78
123	An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate. PLoS ONE, 2015, 10, e0144165.	1.1	37
124	Relating food web structure to resilience, keystone status and uncertainty in ecological responses. Ecosphere, 2014, 5, art81.	1.0	4
125	An investigation into fisheries interaction effects using Atlantis. ICES Journal of Marine Science, 2014, 72, 275-283.	1.2	22
126	Individual transferable quota contribution to environmental stewardship: a theory in need of validation. Ecology and Society, 2014, 19, .	1.0	28

#	Article	IF	CITATIONS
127	The ecosystem approach to fisheries: management at the dynamic interface between biodiversity conservation and sustainable use. Annals of the New York Academy of Sciences, 2014, 1322, 48-60.	1.8	26
128	New approaches to simulating the complex interaction effects of multiple human impacts on the marine environment. ICES Journal of Marine Science, 2014, 71, 764-774.	1.2	23
129	Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish and Fisheries, 2014, 15, 1-22.	2.7	265
130	Finding the accelerator and brake in an individual quota fishery: linking ecology, economics, and fleet dynamics of US West Coast trawl fisheries. ICES Journal of Marine Science, 2014, 71, 308-319.	1.2	21
131	Defining and observing stages of climate-mediated range shifts in marine systems. Global Environmental Change, 2014, 26, 27-38.	3.6	207
132	Ecosystem effects of contemporary life-history changes are comparable to those of fishing. Marine Ecology - Progress Series, 2014, 495, 219-231.	0.9	17
133	A global estimate of carbon stored in the world's mountain grasslands and shrublands, and the implications for climate policy. Global Environmental Change, 2014, 28, 14-24.	3.6	31
134	Evaluation of management strategies in Ningaloo Marine Park, Western Australia. International Journal of Sustainable Society, 2014, 6, 102.	0.0	7
135	An Integrated Approach Is Needed for Ecosystem Based Fisheries Management: Insights from Ecosystem-Level Management Strategy Evaluation. PLoS ONE, 2014, 9, e84242.	1.1	210
136	Ecosystem model of Tasmanian waters explores impacts of climate-change induced changes in primary productivity. Ecological Modelling, 2013, 264, 115-129.	1.2	26
137	Impacts of depleting forage species in the California Current. Environmental Conservation, 2013, 40, 380-393.	0.7	59
138	Ecological effects of trawling fisheries on the eastern Australian continental shelf: a modelling study. Marine and Freshwater Research, 2013, 64, 1068.	0.7	11
139	Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact. Biology Letters, 2013, 9, 20121103.	1.0	134
140	How fast is fisheriesâ€induced evolution? Quantitative analysis of modelling and empirical studies. Evolutionary Applications, 2013, 6, 585-595.	1.5	86
141	The role of behavioural flexibility in a whole of ecosystem model. ICES Journal of Marine Science, 2013, 70, 150-163.	1.2	21
142	Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient. PLoS ONE, 2013, 8, e63797.	1.1	25
143	Indirect Effects of Conservation Policies on the Coupled Human-Natural Ecosystem of the Upper Gulf of California. PLoS ONE, 2013, 8, e64085.	1.1	14
144	The Role of Pre-Existing Disturbances in the Effect of Marine Reserves on Coastal Ecosystems: A Modelling Approach. PLoS ONE, 2013, 8, e61207.	1.1	13

#	Article	IF	CITATIONS
145	Reconsidering the Consequences of Selective Fisheries. Science, 2012, 335, 1045-1047.	6.0	392
146	Modelling ecological change over half a century in a subtropical estuary: impacts of climate change, land-use, urbanization and freshwater extraction. Marine Ecology - Progress Series, 2012, 457, 43-66.	0.9	17
147	Predicting Interactions among Fishing, Ocean Warming, and Ocean Acidification in a Marine System with Wholeâ€Ecosystem Models. Conservation Biology, 2012, 26, 1145-1152.	2.4	85
148	Effective ecosystem-based management must encourage regulatory compliance: A Gulf of California case study. Marine Policy, 2012, 36, 1275-1283.	1.5	16
149	How long can fisheries management delay action in response to ecosystem and climate change?. Ecological Applications, 2012, 22, 298-310.	1.8	46
150	Full compliance with harvest regulations yields ecological benefits: Northern Gulf of California case study. Journal of Applied Ecology, 2012, 49, 63-72.	1.9	23
151	Exploring Trade-Offs between Fisheries and Conservation of the Vaquita Porpoise (Phocoena sinus) Using an Atlantis Ecosystem Model. PLoS ONE, 2012, 7, e42917.	1.1	18
152	Regional-scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system. , 2011, 21, 1380-1398.		53
153	Modelling climate-change effects on Australian and Pacific aquatic ecosystems: a review of analytical tools and management implications. Marine and Freshwater Research, 2011, 62, 1132.	0.7	55
154	Regional Planning and Resilient Futures: Destination Modelling and Tourism Development—The Case of the Ningaloo Coastal Region in Western Australia. Planning Practice and Research, 2011, 26, 393-415.	0.8	11
155	Impacts of Fishing Low–Trophic Level Species on Marine Ecosystems. Science, 2011, 333, 1147-1150.	6.0	481
156	THE USE OF TELESCOPING SPATIAL SCALES TO CAPTURE INSHORE TO SLOPE DYNAMICS IN MARINE ECOSYSTEM MODELING. Natural Resource Modelling, 2011, 24, 335-364.	0.8	7
157	Coupling Biophysical and Socioeconomic Models for Coral Reef Systems in Quintana Roo, Mexican Caribbean. Ecology and Society, 2011, 16, .	1.0	20
158	Human behaviour: the key source of uncertainty in fisheries management. Fish and Fisheries, 2011, 12, 2-17.	2.7	442
159	Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish and Fisheries, 2011, 12, 171-188.	2.7	472
160	Effects of fishing and acidificationâ€related benthic mortality on the southeast Australian marine ecosystem. Global Change Biology, 2011, 17, 3058-3074.	4.2	56
161	Regional-scale scenario analysis for the Meso-American Reef system: Modelling coral reef futures under multiple stressors. Ecological Modelling, 2011, 222, 1756-1770.	1.2	23
162	Characterizing sensitivity and uncertainty in a multiscale model of a complex coral reef system. Ecological Modelling, 2011, 222, 3320-3334.	1.2	13

#	Article	IF	CITATIONS
163	Interesting times: winners, losers, and system shifts under climate change around Australia. ICES Journal of Marine Science, 2011, 68, 1329-1342.	1.2	114
164	Approaches to end-to-end ecosystem models. Journal of Marine Systems, 2010, 81, 171-183.	0.9	343
165	Top-down, bottom-up or middle-out? Avoiding extraneous detail and over-generality in marine ecosystem models. Progress in Oceanography, 2010, 84, 129-133.	1.5	26
166	The northeast US application of ATLANTIS: A full system model exploring marine ecosystem dynamics in a living marine resource management context. Progress in Oceanography, 2010, 87, 214-234.	1.5	91
167	Interactive modelling for natural resource management. Environmental Modelling and Software, 2010, 25, 1075-1085.	1.9	13
168	Effects of climateâ€driven primary production change on marine food webs: implications for fisheries and conservation. Global Change Biology, 2010, 16, 1194-1212.	4.2	181
169	The trophic fingerprint of marine fisheries. Nature, 2010, 468, 431-435.	13.7	306
170	Can simple be useful and reliable? Using ecological indicators to represent and compare the states of marine ecosystems. ICES Journal of Marine Science, 2010, 67, 717-731.	1.2	100
171	Ecosystem-based fisheries management requires a change to the selective fishing philosophy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9485-9489.	3.3	280
172	Ranking the ecological relative status of exploited marine ecosystems. ICES Journal of Marine Science, 2010, 67, 769-786.	1.2	60
173	Estimating EAF indicators from scientific trawl surveys: theoretical and practical concerns. ICES Journal of Marine Science, 2010, 67, 796-806.	1.2	19
174	Fishing catch shares in the face of global change: a framework for integrating cumulative impacts and single species management. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1968-1982.	0.7	73
175	Rebuilding Global Fisheries. Science, 2009, 325, 578-585.	6.0	1,722
176	An agent-based modelling approach to evaluation of multiple-use management strategies for coastal marine ecosystems. Mathematics and Computers in Simulation, 2008, 78, 401-411.	2.4	32
177	Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES Journal of Marine Science, 2007, 64, 633-639.	1.2	322
178	Applying new tools to cephalopod trophic dynamics and ecology: perspectives from the Southern Ocean Cephalopod Workshop, February 2–3, 2006. Reviews in Fish Biology and Fisheries, 2007, 17, 79-99.	2.4	54
179	Which ecological indicators can robustly detect effects of fishing?. ICES Journal of Marine Science, 2005, 62, 540-551.	1.2	310
180	Lessons learnt from a comparison of three ecosystem models for Port Phillip Bay, Australia. African Journal of Marine Science, 2004, 26, 219-243.	0.4	53

ELIZABETH A FULTON

#	Article	IF	CITATIONS
181	Biogeochemical marine ecosystem models II: the effect of physiological detail on model performance. Ecological Modelling, 2004, 173, 371-406.	1.2	186
182	Biogeochemical marine ecosystem models I: IGBEM—a model of marine bay ecosystems. Ecological Modelling, 2004, 174, 267-307.	1.2	102
183	Effects of spatial resolution on the performance and interpretation of marine ecosystem models. Ecological Modelling, 2004, 176, 27-42.	1.2	62
184	Mortality and predation in ecosystem models: is it important how these are expressed?. Ecological Modelling, 2003, 169, 157-178.	1.2	84
185	Effect of complexity on marine ecosystem models. Marine Ecology - Progress Series, 2003, 253, 1-16.	0.9	259
186	Spawning season influences on commercial catch rates: computer simulations and <i>Plectropomus leopardus</i> , a case in point. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 1096-1108.	0.7	18
187	Linking Biodiversity Indicators with Global Conservation Policy. , 0, , 196-212.		0
188	Marine Systems, Food Security, and Future Earth. , 0, , 296-310.		0
189	Fishery Development and Exploitation in South East Australia. Frontiers in Marine Science, 0, 5, .	1.2	10
190	From data compilation to model validation: a comprehensive analysis of a full deep-sea ecosystem model of the Chatham Rise. PeerJ, 0, 7, e6517.	0.9	8
191	Exploring tradeâ€offs in mixed fisheries by integrating fleet dynamics into multispecies sizeâ€spectrum models. Journal of Applied Ecology, 0, , .	1.9	4