
Yunrong Chai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5221389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nature Microbiology, 2022, 7, 831-843.	5.9	44
2	Bacillus subtilis Cell Differentiation, Biofilm Formation and Environmental Prevalence. Microorganisms, 2022, 10, 1108.	1.6	23
3	Bacterial chatter in chronic wound infections. Wound Repair and Regeneration, 2021, 29, 106-116.	1.5	13
4	Sucrose triggers a novel signaling cascade promoting <i>Bacillus subtilis</i> rhizosphere colonization. ISME Journal, 2021, 15, 2723-2737.	4.4	63
5	Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens. Microbiome, 2021, 9, 131.	4.9	36
6	SigB regulates stress resistance, glucose starvation, MnSOD production, biofilm formation, and root colonization in Bacillus cereus 905. Applied Microbiology and Biotechnology, 2021, 105, 5943-5957.	1.7	4
7	The role of rhizodeposits in shaping rhizomicrobiome. Environmental Microbiology Reports, 2020, 12, 160-172.	1.0	56
8	Negative Interplay between Biofilm Formation and Competence in the Environmental Strains of <i>Bacillus subtilis</i> . MSystems, 2020, 5, .	1.7	12
9	Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm. Nature Communications, 2019, 10, 3702.	5.8	52
10	Treating Polymicrobial Infections in Chronic Diabetic Wounds. Clinical Microbiology Reviews, 2019, 32, .	5.7	65
11	A Decrease in Serine Levels during Growth Transition Triggers Biofilm Formation in Bacillus subtilis. Journal of Bacteriology, 2019, 201, .	1.0	7
12	Characterization of Subtilin L-Q11, a Novel Class I Bacteriocin Synthesized by Bacillus subtilis L-Q11 Isolated From Orchard Soil. Frontiers in Microbiology, 2019, 10, 484.	1.5	35
13	The phosphotransferase system gene ptsH plays an important role in MnSOD production, biofilm formation, swarming motility, and root colonization in Bacillus cereus 905. Research in Microbiology, 2019, 170, 86-96.	1.0	32
14	A strong promoter of a non-cry gene directs expression of the cry1Ac gene in Bacillus thuringiensis. Applied Microbiology and Biotechnology, 2018, 102, 3687-3699.	1.7	11
15	Novel Cell Wall Hydrolase CwlC from Bacillus thuringiensis Is Essential for Mother Cell Lysis. Applied and Environmental Microbiology, 2018, 84, .	1.4	19
16	Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity. PLoS ONE, 2018, 13, e0204687.	1.1	29
17	Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications, 2018, 9, 3429.	5.8	184
			_

18 The ClpY-ClpQ protease regulates multicellular development in Bacillus subtilis. Microbiology (United) Tj ETQq0 0 0.7gBT /Overlock 10 Tf

YUNRONG CHAI

#	Article	IF	CITATIONS
19	Genome-Wide Investigation of Biofilm Formation in Bacillus cereus. Applied and Environmental Microbiology, 2017, 83, .	1.4	60
20	The <i>spoOA-sinl-sinR</i> Regulatory Circuit Plays an Essential Role in Biofilm Formation, Nematicidal Activities, and Plant Protection in <i>Bacillus cereus</i> AR156. Molecular Plant-Microbe Interactions, 2017, 30, 603-619.	1.4	34
21	The phosphotransferase system gene ptsI in Bacillus cereus regulates expression of sodA2 and contributes to colonization of wheat roots. Research in Microbiology, 2017, 168, 524-535.	1.0	17
22	Bacillus subtilis utilizes the DNA damage response to manage multicellular development. Npj Biofilms and Microbiomes, 2017, 3, 8.	2.9	23
23	RNA-Mediated <i>cis</i> Regulation in Acinetobacter baumannii Modulates Stress-Induced Phenotypic Variation. Journal of Bacteriology, 2017, 199, .	1.0	9
24	High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation. Applied Microbiology and Biotechnology, 2017, 101, 455-464.	1.7	19
25	Bacillus amyloliquefaciens L-S60 Reforms the Rhizosphere Bacterial Community and Improves Growth Conditions in Cucumber Plug Seedling. Frontiers in Microbiology, 2017, 8, 2620.	1.5	39
26	Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis. PLoS ONE, 2017, 12, e0179761.	1.1	12
27	The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus. Frontiers in Microbiology, 2016, 7, 1025.	1.5	33
28	Poly-Î ³ -Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis. Frontiers in Microbiology, 2016, 7, 1811.	1.5	52
29	Biofilm formation by <i>Bacillus subtilis</i> requires an endoribonucleaseâ€containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR. Molecular Microbiology, 2016, 99, 425-437.	1.2	51
30	Alternative modes of biofilm formation by plantâ€associated <i>Bacillus cereus</i> . MicrobiologyOpen, 2015, 4, 452-464.	1.2	70
31	Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation. MBio, 2015, 6, e00392.	1.8	90
32	The Bacterial Tyrosine Kinase Activator TkmA Contributes to Biofilm Formation Largely Independently of the Cognate Kinase PtkA in Bacillus subtilis. Journal of Bacteriology, 2015, 197, 3421-3432.	1.0	30
33	The LuxS Based Quorum Sensing Governs Lactose Induced Biofilm Formation by Bacillus subtilis. Frontiers in Microbiology, 2015, 6, 1517.	1.5	60
34	A bacterial volatile signal for biofilm formation. Microbial Cell, 2015, 2, 406-408.	1.4	6
35	<i>Bacillus subtilis</i> biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1621-30.	3.3	455
36	Biocontrol of tomato wilt disease by <i><scp>B</scp>acillus subtilis</i> isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 2013, 15, 848-864.	1.8	389

YUNRONG CHAI

#	Article	IF	CITATIONS
37	Sticking together: building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology, 2013, 11, 157-168.	13.6	834
38	A Combination of Glycerol and Manganese Promotes Biofilm Formation in Bacillus subtilis via Histidine Kinase KinD Signaling. Journal of Bacteriology, 2013, 195, 2747-2754.	1.0	157
39	A serine sensor for multicellularity in a bacterium. ELife, 2013, 2, e01501.	2.8	73
40	Galactose Metabolism Plays a Crucial Role in Biofilm Formation by Bacillus subtilis. MBio, 2012, 3, e00184-12.	1.8	140
41	Evidence for Cyclic Di-GMP-Mediated Signaling in Bacillus subtilis. Journal of Bacteriology, 2012, 194, 5080-5090.	1.0	121
42	The quorumâ€sensing protein TraR of <i>Agrobacterium tumefaciens</i> is susceptible to intrinsic and TraMâ€mediated proteolytic instability. Molecular Microbiology, 2012, 84, 807-815.	1.2	18
43	A <i>Bacillus subtilis</i> sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Molecular Microbiology, 2012, 85, 418-430.	1.2	211
44	Evidence that metabolism and chromosome copy number control mutually exclusive cell fates in <i>Bacillus subtilis</i> . EMBO Journal, 2011, 30, 1402-1413.	3.5	69
45	Reversal of an epigenetic switch governing cell chaining in <i>Bacillus subtilis</i> by protein instability. Molecular Microbiology, 2010, 78, 218-229.	1.2	71
46	An epigenetic switch governing daughter cell separation in <i>Bacillus subtilis</i> . Genes and Development, 2010, 24, 754-765.	2.7	160
47	A Widely Conserved Gene Cluster Required for Lactate Utilization in <i>Bacillus subtilis</i> and Its Involvement in Biofilm Formation. Journal of Bacteriology, 2009, 191, 2423-2430.	1.0	120
48	The Chaperone GroESL Enhances the Accumulation of Soluble, Active TraR Protein, a Quorum-Sensing Transcription Factor from <i>Agrobacterium tumefaciens</i> . Journal of Bacteriology, 2009, 191, 3706-3711.	1.0	10
49	Paralogous antirepressors acting on the master regulator for biofilm formation in <i>Bacillus subtilis</i> . Molecular Microbiology, 2009, 74, 876-887.	1.2	71
50	Bistability and biofilm formation in <i>Bacillus subtilis</i> . Molecular Microbiology, 2008, 67, 254-263.	1.2	297
51	A novel regulatory protein governing biofilm formation in <i>Bacillus subtilis</i> . Molecular Microbiology, 2008, 68, 1117-1127.	1.2	129
52	Reconstitution of the Biochemical Activities of the AttJ Repressor and the AttK, AttL, and AttM Catabolic Enzymes of Agrobacterium tumefaciens. Journal of Bacteriology, 2007, 189, 3674-3679.	1.0	52
53	A small antisense RNA downregulates expression of an essential replicase protein of an <i>Agrobacterium tumefaciens</i> Ti plasmid. Molecular Microbiology, 2005, 56, 1574-1585.	1.2	58
54	Direct binding of the quorum sensing regulator CepR ofBurkholderia cenocepaciato two target promotersin vitro. Molecular Microbiology, 2005, 57, 452-467.	1.2	52

YUNRONG CHAI

#	Article	IF	CITATIONS
55	RepB protein of anAgrobacterium tumefaciensTi plasmid binds to two adjacent sites betweenrepAandrepBfor plasmid partitioning and autorepression. Molecular Microbiology, 2005, 58, 1114-1129.	1.2	29
56	Amino-Terminal Protein Fusions to the TraR Quorum-Sensing Transcription Factor Enhance Protein Stability and Autoinducer-Independent Activity. Journal of Bacteriology, 2005, 187, 1219-1226.	1.0	12
57	Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity. Molecular Microbiology, 2003, 51, 765-776.	1.2	54
58	Agrobacterium Bioassay Strain for Ultrasensitive Detection of N -Acylhomoserine Lactone-Type Quorum-Sensing Molecules: Detection of Autoinducers in Mesorhizobium huakuii. Applied and Environmental Microbiology, 2003, 69, 6949-6953.	1.4	206
59	TrlR, a defective TraR-like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers. Molecular Microbiology, 2001, 40, 414-421.	1.2	75