
Marc S Cortese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5221166/publications.pdf Version: 2024-02-01

MARCS CORTESE

#	Article	IF	CITATIONS
1	Rewiring of transcriptional networks as a major event leading to the diversity of asexual multicellularity in fungi. Critical Reviews in Microbiology, 2019, 45, 548-563.	2.7	29
2	Developmental regulators FlbE/D orchestrate the polarity site-to-nucleus dynamics of the fungal bZIP transcription factor FlbB. Cellular and Molecular Life Sciences, 2019, 76, 4369-4390.	2.4	14
3	The Early Asexual Development Regulator fluG Codes for a Putative Bifunctional Enzyme. Frontiers in Microbiology, 2019, 10, 778.	1.5	5
4	Tipâ€ŧoâ€nucleus migration dynamics of the asexual development regulator <scp>FlbB</scp> in vegetative cells. Molecular Microbiology, 2015, 98, 607-624.	1.2	27
5	A second component of the SltA-dependent cation tolerance pathway in Aspergillus nidulans. Fungal Genetics and Biology, 2015, 82, 116-128.	0.9	16
6	High-throughput characterization of intrinsic disorder in proteins from the Protein Structure Initiative. Journal of Structural Biology, 2012, 180, 201-215.	1.3	34
7	GmcA Is a Putative Glucose-Methanol-Choline Oxidoreductase Required for the Induction of Asexual Development in Aspergillus nidulans. PLoS ONE, 2012, 7, e40292.	1.1	29
8	Elucidation of Functional Markers from Aspergillus nidulans Developmental Regulator FlbB and Their Phylogenetic Distribution. PLoS ONE, 2011, 6, e17505.	1.1	9
9	HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology, 2010, 407, 137-142.	1.1	118
10	All 4 diâ€leucine motifs in the first hydrophobic domain of the E5 oncoprotein of human papillomavirus type 16 are essential for surface MHC class I downregulation activity and E5 endomembrane localization. International Journal of Cancer, 2010, 126, 1675-1682.	2.3	48
11	Effects of human papillomavirus type 16 E5 deletion mutants on epithelial morphology: functional characterization of each transmembrane domain. Journal of General Virology, 2010, 91, 521-530.	1.3	37
12	Adenovirus type 5 E4 Orf3 protein targets promyelocytic leukaemia (PML) protein nuclear domains for disruption via a sequence in PML isoform II that is predicted as a protein interaction site by bioinformatic analysis. Journal of General Virology, 2009, 90, 95-104.	1.3	37
13	Bovine papillomavirus type 1 oncoprotein E5 inhibits equine MHC class I and interacts with equine MHC I heavy chain. Journal of General Virology, 2009, 90, 2865-2870.	1.3	37
14	Intrinsic disorder in scaffold proteins: Getting more from less. Progress in Biophysics and Molecular Biology, 2008, 98, 85-106.	1.4	259
15	Structural Basis for Regulation of Protein Phosphatase 1 by Inhibitor-2. Journal of Biological Chemistry, 2007, 282, 28874-28883.	1.6	175
16	DisProt: the Database of Disordered Proteins. Nucleic Acids Research, 2007, 35, D786-D793.	6.5	711
17	Characterization of Molecular Recognition Features, MoRFs, and Their Binding Partners. Journal of Proteome Research, 2007, 6, 2351-2366.	1.8	433
18	Intrinsic Disorder in the Protein Data Bank. Journal of Biomolecular Structure and Dynamics, 2007, 24, 325-341.	2.0	140

MARC S CORTESE

#	Article	IF	CITATIONS
19	Analysis of Molecular Recognition Features (MoRFs). Journal of Molecular Biology, 2006, 362, 1043-1059.	2.0	672
20	Rational drug design via intrinsically disordered protein. Trends in Biotechnology, 2006, 24, 435-442.	4.9	225
21	Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8390-8395.	3.3	428
22	Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS Journal, 2005, 272, 5129-5148.	2.2	1,052
23	DisProt: a database of protein disorder. Bioinformatics, 2005, 21, 137-140.	1.8	231
24	Comparing and Combining Predictors of Mostly Disordered Proteins. Biochemistry, 2005, 44, 1989-2000.	1.2	485
25	Uncovering the Unfoldome:Â Enriching Cell Extracts for Unstructured Proteins by Acid Treatment. Journal of Proteome Research, 2005, 4, 1610-1618.	1.8	71
26	Coupled Folding and Binding with α-Helix-Forming Molecular Recognition Elementsâ€. Biochemistry, 2005, 44, 12454-12470.	1.2	593
27	Structural, functional, and evolutionary analysis of moeZ, a gene encoding an enzyme required for the synthesis of the Pseudomonas metabolite, pyridine-2,6-bis(thiocarboxylic acid). BMC Evolutionary Biology, 2002, 2, 8.	3.2	17
28	Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. BioMetals, 2002, 15, 103-120.	1.8	59
29	Antimicrobial Properties of Pyridine-2,6-Dithiocarboxylic Acid, a Metal Chelator Produced by Pseudomonas spp. Applied and Environmental Microbiology, 2001, 67, 3934-3942.	1.4	43
30	A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid). Environmental Microbiology, 2000, 2, 407-416.	1.8	60