
David P Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/522101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Factors associated with graft survival in South African adolescent renal transplant patients at CMJAH over a 20â€year period (GRAFTâ€SAT Study). Pediatric Transplantation, 2022, 26, e14148.	0.5	4
2	Epidemiology of SARSâ€CoVâ€2 infection and SARSâ€CoVâ€2 positive hospital admissions among children in South Africa. Influenza and Other Respiratory Viruses, 2022, 16, 34-47.	1.5	11
3	Prolonged-course tuberculosis treatment or secondary prevention for those at high risk of recurrence?. Clinical Microbiology and Infection, 2022, , .	2.8	Ο
4	Digitally recorded and remotely classified lung auscultation compared with conventional stethoscope classifications among children aged 1–59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) case–control study. BMJ Open Respiratory Research, 2022, 9, e001144.	1.2	3
5	The Etiology of Pneumonia From Analysis of Lung Aspirate and Pleural Fluid Samples: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2021, 73, e3788-e3796.	2.9	14
6	Global burden of acute lower respiratory infection associated with human metapneumovirus in children under 5 years in 2018: a systematic review and modelling study. The Lancet Global Health, 2021, 9, e33-e43.	2.9	71
7	Upper Respiratory Tract Co-detection of Human Endemic Coronaviruses and High-density Pneumococcus Associated With Increased Severity Among HIV-Uninfected Children Under 5 Years Old in the PERCH Study. Pediatric Infectious Disease Journal, 2021, 40, 503-512.	1.1	5
8	Severe Acute Respiratory Syndrome Coronavirus 2 Infection Among Healthcare Workers in South Africa: A Longitudinal Cohort Study. Clinical Infectious Diseases, 2021, 73, 1896-1900.	2.9	20
9	Clinical Characteristics and Histopathology of Coronavirus Disease 2019-Related Deaths in African Children. Pediatric Infectious Disease Journal, 2021, 40, e323-e332.	1.1	8
10	Epidemiology of the Rhinovirus (RV) in African and Southeast Asian Children: A Case-Control Pneumonia Etiology Study. Viruses, 2021, 13, 1249.	1.5	9
11	Epidemiology and Seasonality of Endemic Human Coronaviruses in South African and Zambian Children: A Case-Control Pneumonia Study. Viruses, 2021, 13, 1513.	1.5	9
12	The Etiology of Pneumonia in HIV-1-infected South African Children in the Era of Antiretroviral Treatment. Pediatric Infectious Disease Journal, 2021, 40, S69-S78.	1.1	6
13	The Etiology of Pneumonia in HIV-uninfected South African Children. Pediatric Infectious Disease Journal, 2021, 40, S59-S68.	1.1	10
14	The Predictive Performance of a Pneumonia Severity Score in Human Immunodeficiency Virus–negative Children Presenting to Hospital in 7 Low- and Middle-income Countries. Clinical Infectious Diseases, 2020, 70, 1050-1057.	2.9	26
15	Epidemiology of invasive bacterial infections in pneumococcal conjugate vaccine-vaccinated and -unvaccinated children under 5 years of age in Soweto, South Africa: a cohort study from a high-HIV burden setting. Paediatrics and International Child Health, 2020, 40, 50-57.	0.3	3
16	Prevention of community-acquired pneumonia in children: South African Thoracic Society guidelines (part 4). South African Medical Journal, 2020, 110, 741.	0.2	2
17	Digital auscultation in PERCH: Associations with chest radiography and pneumonia mortality in children. Pediatric Pulmonology, 2020, 55, 3197-3208.	1.0	13
18	Of novel analytic approaches and impactful findings… and an opportunity to pose more questions. The Lancet Regional Health - Western Pacific, 2020, 2, 100018.	1.3	0

DAVID P MOORE

#	Article	IF	CITATIONS
19	A prospective case-control study on the association of Rhinovirus nasopharyngeal viral load and viremia in South African children hospitalized with severe pneumonia. Journal of Clinical Virology, 2020, 125, 104288.	1.6	7
20	Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children. Pediatric Radiology, 2020, 50, 482-491.	1.1	48
21	Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. The Lancet Global Health, 2019, 7, e1031-e1045.	2.9	266
22	Molecular Subtyping of Human Rhinovirus in Children from Three Sub-Saharan African Countries. Journal of Clinical Microbiology, 2019, 57, .	1.8	13
23	Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet, The, 2019, 394, 757-779.	6.3	569
24	Congenital Rubella Syndrome Surveillance in South Africa Using a Sentinel Site Approach: A Cross-sectional Study. Clinical Infectious Diseases, 2019, 68, 1658-1664.	2.9	12
25	Posterior urethral valves in South African boys: Outcomes and challenges. South African Medical Journal, 2018, 108, 667.	0.2	8
26	Effectiveness of the 13-valent pneumococcal conjugate vaccine against invasive pneumococcal disease in South African children: a case-control study. The Lancet Global Health, 2017, 5, e359-e369.	2.9	47
27	Hospitalization for Culture-confirmed Pulmonary Tuberculosis in the Era of Childhood Pneumococcal Conjugate Vaccine Immunization. Pediatric Infectious Disease Journal, 2017, 36, e14-e21.	1.1	3
28	Imputing the Direct and Indirect Effectiveness of Childhood Pneumococcal Conjugate Vaccine Against Invasive Pneumococcal Disease by Surveying Temporal Changes in Nasopharyngeal Pneumococcal Colonization. American Journal of Epidemiology, 2017, 186, 435-444.	1.6	26
29	Chest Radiograph Findings in Childhood Pneumonia Cases From the Multisite PERCH Study. Clinical Infectious Diseases, 2017, 64, S262-S270.	2.9	56
30	Density of Upper Respiratory Colonization With Streptococcus pneumoniae and Its Role in the Diagnosis of Pneumococcal Pneumonia Among Children Aged <5 Years in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S317-S327.	2.9	96
31	The Incremental Value of Repeated Induced Sputum and Gastric Aspirate Samples for the Diagnosis of Pulmonary Tuberculosis in Young Children With Acute Community-Acquired Pneumonia. Clinical Infectious Diseases, 2017, 64, S309-S316.	2.9	21
32	Listening panel agreement and characteristics of lung sounds digitally recorded from children aged 1–59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) case–control study. BMJ Open Respiratory Research, 2017, 4, e000193.	1.2	23
33	Reply to Drancourt. Clinical Infectious Diseases, 2017, 65, 2159-2159.	2.9	2
34	The Diagnostic Utility of Induced Sputum Microscopy and Culture in Childhood Pneumonia. Clinical Infectious Diseases, 2017, 64, S280-S288.	2.9	29
35	Detection of Pneumococcal DNA in Blood by Polymerase Chain Reaction for Diagnosing Pneumococcal Pneumonia in Young Children From Low- and Middle-Income Countries. Clinical Infectious Diseases, 2017, 64, S347-S356.	2.9	37
36	Immunogenicity of 13-valent pneumococcal conjugate vaccine among children with underlying medical conditions. Vaccine, 2017, 35, 4321-4329.	1.7	6

DAVID P MOORE

#	Article	IF	CITATIONS
37	Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet, The, 2017, 390, 946-958.	6.3	1,634
38	Standardized Interpretation of Chest Radiographs in Cases of Pediatric Pneumonia From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S253-S261.	2.9	62
39	Colonization Density of the Upper Respiratory Tract as a Predictor of Pneumonia—Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Clinical Infectious Diseases, 2017, 64, S328-S336.	2.9	49
40	ls Higher Viral Load in the Upper Respiratory Tract Associated With Severe Pneumonia? Findings From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S337-S346.	2.9	81
41	The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children With Pneumonia. Clinical Infectious Diseases, 2017, 64, S368-S377.	2.9	70
42	Microscopic Analysis and Quality Assessment of Induced Sputum From Children With Pneumonia in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S271-S279.	2.9	32
43	Limited Utility of Polymerase Chain Reaction in Induced Sputum Specimens for Determining the Causes of Childhood Pneumonia in Resource-Poor Settings: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2017, 64, S289-S300.	2.9	31
44	Association of C-Reactive Protein With Bacterial and Respiratory Syncytial Virus–Associated Pneumonia Among Children Aged <5 Years in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S378-S386.	2.9	84
45	Should Controls With Respiratory Symptoms Be Excluded From Case-Control Studies of Pneumonia Etiology? Reflections From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S205-S212.	2.9	25
46	Standardization of Clinical Assessment and Sample Collection Across All PERCH Study Sites. Clinical Infectious Diseases, 2017, 64, S228-S237.	2.9	27
47	Evaluation of Pneumococcal Load in Blood by Polymerase Chain Reaction for the Diagnosis of Pneumococcal Pneumonia in Young Children in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S357-S367.	2.9	30
48	Laboratory-acquired infections of Salmonella enterica serotype Typhi in South Africa: phenotypic and genotypic analysis of isolates. BMC Infectious Diseases, 2017, 17, 656.	1.3	23
49	Data Management and Data Quality in PERCH, a Large International Case-Control Study of Severe Childhood Pneumonia. Clinical Infectious Diseases, 2017, 64, S238-S244.	2.9	13
50	Safety of Induced Sputum Collection in Children Hospitalized With Severe or Very Severe Pneumonia. Clinical Infectious Diseases, 2017, 64, S301-S308.	2.9	17
51	Pertussis-Associated Pneumonia in Infants and Children From Low- and Middle-Income Countries Participating in the PERCH Study. Clinical Infectious Diseases, 2016, 63, S187-S196.	2.9	38
52	Risk Factors for Presumed Bacterial Pneumonia Among HIV-uninfected Children Hospitalized in Soweto, South Africa. Pediatric Infectious Disease Journal, 2016, 35, 1169-1174.	1.1	17
53	Efavirenz as a cause of ataxia in children. South African Medical Journal, 2015, 105, 876.	0.2	6
54	Efavirenz as a cause of ataxia in children. South African Medical Journal, 2015, 105, 897.	0.2	13

DAVID P MOORE

#	Article	IF	CITATIONS
55	Integrated Source Case Investigation for Tuberculosis (TB) and HIV in the Caregivers and Household Contacts of Hospitalised Young Children Diagnosed with TB in South Africa: An Observational Study. PLoS ONE, 2015, 10, e0137518.	1.1	15
56	Effectiveness of pneumococcal conjugate vaccine against presumed bacterial pneumonia hospitalisation in HIV-uninfected South African children: a case–control study. Thorax, 2015, 70, 1149-1155.	2.7	32
57	Risk Factors for Invasive Pneumococcal Disease Among Children Less Than 5 Years of Age in a High HIV Prevalence Setting, South Africa, 2010 to 2012. Pediatric Infectious Disease Journal, 2015, 34, 27-34.	1.1	16
58	Effectiveness of 7-Valent Pneumococcal Conjugate Vaccine Against Invasive Pneumococcal Disease in HIV-Infected and -Uninfected Children in South Africa: A Matched Case-Control Study. Clinical Infectious Diseases, 2014, 59, 808-818.	2.9	39
59	Effects of Vaccination on Invasive Pneumococcal Disease in South Africa. New England Journal of Medicine, 2014, 371, 1889-1899.	13.9	308
60	The effect of topical calcipotriol or zinc on tuberculin skin tests in hospitalised South African children. International Journal of Tuberculosis and Lung Disease, 2014, 18, 388-393.	0.6	2
61	Temporal Association in Hospitalizations for Tuberculosis, Invasive Pneumococcal Disease and Influenza Virus Illness in South African Children. PLoS ONE, 2014, 9, e91464.	1.1	29
62	Impact of the Antiretroviral Treatment Program on the Burden of Hospitalization for Culture-confirmed Tuberculosis in South African Children. Pediatric Infectious Disease Journal, 2013, 32, 972-977.	1.1	26
63	Changes in Pediatric HIV-Related Hospital Admissions and Mortality in Soweto, South Africa, 1996–2011. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 60, 503-510.	0.9	15
64	Respiratory viral and pneumococcal coinfection of the respiratory tract: implications of pneumococcal vaccination. Expert Review of Respiratory Medicine, 2012, 6, 451-465.	1.0	21
65	High prevalence of childhood multi-drug resistant tuberculosis in Johannesburg, South Africa: a cross sectional study. BMC Infectious Diseases, 2011, 11, 28.	1.3	54
66	The impact of antiretroviral treatment on the burden of invasive pneumococcal disease in South African children: a time series analysis. Aids, 2011, 25, 453-462.	1.0	65
67	Role of Streptococcus pneumoniae in Hospitalization for Acute Community-acquired Pneumonia Associated With Culture-confirmed Mycobacterium tuberculosis in Children. Pediatric Infectious Disease Journal, 2010, 29, 1099-1104.	1.1	77