
Brian J Harvey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5220894/publications.pdf Version: 2024-02-01

RDIAN I HADVEV

#	Article	IF	CITATIONS
1	Does the legacy of historical thinning treatments foster resilience to bark beetle outbreaks in subalpine forests?. Ecological Applications, 2022, 32, e02474.	3.8	10
2	Do you CBI what I see? The relationship between the Composite Burn Index and quantitative field measures of burn severity varies across gradients of forest structure. International Journal of Wildland Fire, 2022, 31, 112-123.	2.4	13
3	Harnessing <scp>NEON</scp> to evaluate ecological tipping points: Opportunities, challenges, and approaches. Ecosphere, 2022, 13, .	2.2	4
4	Cascadia Burning: The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, <scp>USA</scp> . Ecosphere, 2022, 13, .	2.2	23
5	Droughty times in mesic places: factors associated with forest mortality vary by scale in a temperate subalpine region. Ecosphere, 2021, 12, e03318.	2.2	14
6	Effects of Bark Beetle Outbreaks on Forest Landscape Pattern in the Southern Rocky Mountains, U.S.A Remote Sensing, 2021, 13, 1089.	4.0	17
7	Increasing rates of subalpine tree mortality linked to warmer and drier summers. Journal of Ecology, 2021, 109, 2203-2218.	4.0	24
8	Fire Ecology of Rocky Mountain Forests. Managing Forest Ecosystems, 2021, , 287-336.	0.9	6
9	Projected increases in western US forest fire despite growing fuel constraints. Communications Earth & Environment, 2021, 2, .	6.8	102
10	Harnessing the NEON data revolution to advance open environmental science with a diverse and data apable community. Ecosphere, 2021, 12, .	2.2	15
11	The Fire and Tree Mortality Database, for empirical modeling of individual tree mortality after fire. Scientific Data, 2020, 7, 194.	5.3	13
12	Reproductive maturity and cone abundance vary with tree size and stand basal area for two widely distributed conifers. Ecosphere, 2020, 11, e03092.	2.2	17
13	Wildfire-Driven Forest Conversion in Western North American Landscapes. BioScience, 2020, 70, 659-673.	4.9	323
14	Neighborhood context mediates probability of host tree mortality in a severe bark beetle outbreak. Ecosphere, 2020, 11, e03236.	2.2	18
15	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	4.0	281
16	Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 2020, 16, .	3.0	252
17	Rethinking resilience to wildfire. Nature Sustainability, 2019, 2, 797-804.	23.7	174
18	Stand dynamics and topographic setting influence changes in live tree biomass over a 34-year permanent plot record in a subalpine forest in the Colorado Front Range. Canadian Journal of Forest Research, 2019, 49, 1256-1264.	1.7	9

BRIAN J HARVEY

#	Article	IF	CITATIONS
19	Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proceedings of the United States of America, 2019, 116, 11319-11328.	7.1	156
20	Integrating Subjective and Objective Dimensions of Resilience in Fire-Prone Landscapes. BioScience, 2019, 69, 379-388.	4.9	40
21	Incorporating biophysical gradients and uncertainty into burn severity maps in a temperate fireâ€prone forested region. Ecosphere, 2019, 10, e02600.	2.2	40
22	The value of linking paleoecological and neoecological perspectives to understand spatially-explicit ecosystem resilience. Landscape Ecology, 2019, 34, 17-33.	4.2	20
23	Moisture availability limits subalpine tree establishment. Ecology, 2018, 99, 567-575.	3.2	100
24	Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 2018, 21, 243-252.	6.4	448
25	Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 2018, 9, 4355.	12.8	167
26	Different vital rates of Engelmann spruce and subalpine fir explain discordance in understory and overstory dominance. Canadian Journal of Forest Research, 2018, 48, 1554-1562.	1.7	10
27	The nature of the beast: examining climate adaptation options in forests with standâ€replacing fire regimes. Ecosphere, 2018, 9, e02140.	2.2	40
28	Adapt to more wildfire in western North American forests as climate changes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4582-4590.	7.1	536
29	Historical foundations and future directions in macrosystems ecology. Ecology Letters, 2017, 20, 147-157.	6.4	49
30	High and dry: postâ€fire tree seedling establishment in subalpine forests decreases with postâ€fire drought and large standâ€replacing burn patches. Global Ecology and Biogeography, 2016, 25, 655-669.	5.8	213
31	Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 2016, 14, 369-378.	4.0	947
32	Human-caused climate change is now a key driver of forest fire activity in the western United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11649-11650.	7.1	70
33	Regeneration of montane forests 24Âyears after the 1988 Yellowstone fires: A fire atalyzed shift in lower treelines?. Ecosphere, 2016, 7, e01410.	2.2	82
34	Drivers and trends in landscape patterns of stand-replacing fire in forests of the US Northern Rocky Mountains (1984–2010). Landscape Ecology, 2016, 31, 2367-2383.	4.2	89
35	Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Ecology, 2016, 97, 2272-2282.	3.2	83
36	Fire severity unaffected by spruce beetle outbreak in spruceâ€fir forests in southwestern Colorado. Ecological Applications, 2016, 26, 700-711.	3.8	35

BRIAN J HARVEY

#	Article	IF	CITATIONS
37	Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions. Ecological Applications, 2014, 24, 1608-1625.	3.8	73
38	Divergent successional pathways of stand development following fire in a <scp>C</scp> alifornia closedâ€cone pine forest. Journal of Vegetation Science, 2014, 25, 88-99.	2.2	61
39	Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15120-15125.	7.1	118
40	Evaluating post-outbreak management effects on future fuel profiles and stand structure in bark beetle-impacted forests of Greater Yellowstone. Forest Ecology and Management, 2013, 303, 160-174.	3.2	27
41	Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglasâ€fir forests. Ecology, 2013, 94, 2475-2486.	3.2	90
42	Bark beetle effects on fuel profiles across a range of stand structures in Douglasâ€fir forests of Greater Yellowstone. Ecological Applications, 2013, 23, 3-20.	3.8	73
43	Spatial variability in stand structure and density-dependent mortality in newly established post-fire stands of a California closed-cone pine forest. Forest Ecology and Management, 2011, 262, 2042-2051.	3.2	15
44	Demographic processes underpinning post-fire resilience in California closed-cone pine forests: the importance of fire interval, stand structure, and climate. Plant Ecology, 0, , 1.	1.6	5
45	Climate change and altered fire regimes: impacts on plant populations, species, and ecosystems in both hemispheres. Plant Ecology, 0, , .	1.6	1