Elaine Emmerson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5220818/publications.pdf

Version: 2024-02-01

22 papers

1,358 citations

³⁹³⁹⁸²
19
h-index

22 g-index

28 all docs 28 docs citations

28 times ranked

1927 citing authors

#	Article	IF	CITATIONS
1	The role of salivary gland macrophages in infection, disease and repair. International Review of Cell and Molecular Biology, 2022, , 1-34.	1.6	4
2	Mouth-Watering Results: Clinical Need, Current Approaches, and Future Directions for Salivary Gland Regeneration. Trends in Molecular Medicine, 2020, 26, 649-669.	3.5	46
3	Senescent cells and macrophages: key players for regeneration?. Open Biology, 2020, 10, 200309.	1.5	50
4	Salivary gland stem cells: A review of development, regeneration and cancer. Genesis, 2018, 56, e23211.	0.8	70
5	Salivary glands regenerate after radiation injury through SOX2â€mediated secretory cell replacement. EMBO Molecular Medicine, 2018, 10, .	3.3	86
6	Diverse progenitor cells preserve salivary gland ductal architecture after radiation induced damage. Development (Cambridge), 2018, 145, .	1.2	53
7	Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous HumanÂWounds. Journal of Investigative Dermatology, 2017, 137, 543-545.	0.3	17
8	Identification and characterization of a rich population of CD34+ mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands. Scientific Reports, 2017, 7, 3484.	1.6	24
9	Defining epithelial cell dynamics and lineage relationships in the developing lacrimal gland. Development (Cambridge), 2017, 144, 2517-2528.	1.2	32
10	SOX2 regulates acinar cell development in the salivary gland. ELife, 2017, 6, .	2.8	78
11	Parasympathetic Innervation Regulates Tubulogenesis in the Developing Salivary Gland. Developmental Cell, 2014, 30, 449-462.	3.1	124
12	Estrogen Receptor-Alpha Promotes Alternative Macrophage Activation during Cutaneous Repair. Journal of Investigative Dermatology, 2014, 134, 2447-2457.	0.3	105
13	Manipulating the Murine Lacrimal Gland. Journal of Visualized Experiments, 2014, , e51970.	0.2	11
14	Estrogen receptor-mediated signalling in female mice is locally activated in response to wounding. Molecular and Cellular Endocrinology, 2013, 375, 149-156.	1.6	21
15	Insulin-Like Growth Factor-1 Promotes Wound Healing in Estrogen-Deprived Mice: New Insights into Cutaneous IGF-1R/ERα Cross Talk. Journal of Investigative Dermatology, 2012, 132, 2838-2848.	0.3	71
16	The role of estrogen deficiency in skin ageing and wound healing. Biogerontology, 2012, 13, 3-20.	2.0	95
17	MIF: a key player in cutaneous biology and wound healing. Experimental Dermatology, 2011, 20, 1-6.	1.4	73
18	Estrogen promotes cutaneous wound healing via estrogen receptor \hat{I}^2 independent of its antiinflammatory activities. Journal of Experimental Medicine, 2010, 207, 1825-1833.	4.2	146

#	Article	IF	CITATION
19	The phytoestrogen genistein promotes wound healing by multiple independent mechanisms. Molecular and Cellular Endocrinology, 2010, 321, 184-193.	1.6	66
20	$17\hat{l}^2$ -Estradiol Inhibits Wound Healing in Male Mice via Estrogen Receptor- $\hat{l}\pm$. American Journal of Pathology, 2010, 176, 2707-2721.	1.9	31
21	Unique and Synergistic Roles for 17β-Estradiol and Macrophage Migration Inhibitory Factor during Cutaneous Wound Closure Are Cell Type Specific. Endocrinology, 2009, 150, 2749-2757.	1.4	48
22	Selective Estrogen Receptor Modulators Accelerate Cutaneous Wound Healing in Ovariectomized Female Mice. Endocrinology, 2008, 149, 551-557.	1.4	102