Elisabeth S Bakker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5220137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecology Letters, 2006, 9, 780-788.	3.0	393
2	Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 868-873.	3.3	308
3	Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 847-855.	3.3	270
4	Management and control methods of invasive alien freshwater aquatic plants: A review. Aquatic Botany, 2017, 136, 112-137.	0.8	217
5	Shifting Mosaics in Grazed Woodlands Driven by the Alternation of Plant Facilitation and Competition. Plant Biology, 1999, 1, 127-137.	1.8	195
6	Herbivory on freshwater and marine macrophytes: A review and perspective. Aquatic Botany, 2016, 135, 18-36.	0.8	193
7	Ecological anachronisms in the recruitment of temperate light-demanding tree species in wooded pastures. Journal of Applied Ecology, 2004, 41, 571-582.	1.9	155
8	Soil seed bank composition along a gradient from dry alvar grassland toJuniperusshrubland. Journal of Vegetation Science, 1996, 7, 165-176.	1.1	153
9	Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia, 2013, 710, 23-37.	1.0	145
10	Impact of herbivores on nitrogen cycling: contrasting effects of small and large species. Oecologia, 2004, 138, 91-101.	0.9	141
11	Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution, 2018, 2, 1925-1932.	3.4	140
12	Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography, 2016, 39, 162-179.	2.1	104
13	Experimental manipulation of predation risk and food quality: effect on grazing behaviour in a central-place foraging herbivore. Oecologia, 2005, 146, 157-167.	0.9	99
14	Impact of differentâ€sized herbivores on recruitment opportunities for subordinate herbs in grasslands. Journal of Vegetation Science, 2003, 14, 465-474.	1.1	97
15	Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes. Frontiers in Plant Science, 2018, 9, 194.	1.7	97
16	Plants in aquatic ecosystems: current trends and future directions. Hydrobiologia, 2018, 812, 1-11.	1.0	94
17	Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms. Basic and Applied Ecology, 2010, 11, 432-439.	1.2	89
18	An integrated perspective to explain nitrogen mineralization in grazed ecosystems. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 32-44.	1.1	89

#	Article	IF	CITATIONS
19	Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquatic Ecology, 2016, 50, 485-498.	0.7	72
20	Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshwater Biology, 2011, 56, 1783-1797.	1.2	68
21	Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys?. Environmental Management, 2017, 59, 619-634.	1.2	64
22	Trophic rewilding: impact on ecosystems under global change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170432.	1.8	62
23	Effects of Rising Temperature on the Growth, Stoichiometry, and Palatability of Aquatic Plants. Frontiers in Plant Science, 2018, 9, 1947.	1.7	55
24	Synergy between shading and herbivory triggers macrophyte loss and regime shifts in aquatic systems. Oikos, 2016, 125, 1489-1495.	1.2	52
25	Lake restoration by in-lake iron addition: a synopsis of iron impact on aquatic organisms and shallow lake ecosystems. Aquatic Ecology, 2016, 50, 121-135.	0.7	51
26	The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences. Frontiers in Earth Science, 2017, 5, .	0.8	50
27	Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: Roles of light, sediment nutrient levels, and propagule density. Aquatic Botany, 2017, 141, 29-38.	0.8	49
28	Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic and Applied Ecology, 2011, 12, 466-475.	1.2	48
29	Grazingâ€induced changes in plant–soil feedback alter plant biomass allocation. Oikos, 2014, 123, 800-806.	1.2	47
30	Windows of opportunity for germination of riparian species after restoring water level fluctuations: a field experiment with controlled seed banks. Journal of Applied Ecology, 2014, 51, 1006-1014.	1.9	47
31	Hydrology, shore morphology and species traits affect seed dispersal, germination and community assembly in shoreline plant communities. Journal of Ecology, 2014, 102, 998-1007.	1.9	46
32	Success of lake restoration depends on spatial aspects of nutrient loading and hydrology. Science of the Total Environment, 2019, 679, 248-259.	3.9	45
33	Contrasting effects of large herbivore grazing on smaller herbivores. Basic and Applied Ecology, 2009, 10, 141-150.	1.2	44
34	Fighting internal phosphorus loading: An evaluation of the large scale application of gradual Fe-addition to a shallow peat lake. Ecological Engineering, 2015, 83, 78-89.	1.6	43
35	Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyteâ€dominated systems with zero net effect on carbon burial. Global Change Biology, 2018, 24, 5231-5242.	4.2	43
36	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	4.2	43

#	Article	IF	CITATIONS
37	More salt, please: global patterns, responses and impacts of foliar sodium in grasslands. Ecology Letters, 2019, 22, 1136-1144.	3.0	42
38	Crossâ€site comparison of herbivore impact on nitrogen availability in grasslands: the role of plant nitrogen concentration. Oikos, 2009, 118, 1613-1622.	1.2	40
39	Large herbivores: missing partners of western European lightâ€demanding tree and shrub species?. , 2006, , 203-231.		38
40	Invasive Crayfish Threaten the Development of Submerged Macrophytes in Lake Restoration. PLoS ONE, 2013, 8, e78579.	1.1	37
41	Mechanisms of Invasion Resistance of Aquatic Plant Communities. Frontiers in Plant Science, 2018, 9, 134.	1.7	37
42	Aquatic herbivores facilitate the emission of methane from wetlands. Ecology, 2011, 92, 1166-1173.	1.5	36
43	Plant traits and plant biogeography control the biotic resistance provided by generalist herbivores. Functional Ecology, 2017, 31, 1184-1192.	1.7	36
44	Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis. Frontiers in Plant Science, 2017, 8, 655.	1.7	36
45	Native and Non-Native Plants Provide Similar Refuge to Invertebrate Prey, but Less than Artificial Plants. PLoS ONE, 2015, 10, e0124455.	1.1	36
46	Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants. Ecological Engineering, 2017, 106, 423-430.	1.6	35
47	Herbivore exclusion promotes a more stochastic plant community assembly in a natural grassland. Ecology, 2017, 98, 961-970.	1.5	33
48	The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis. Hydrobiologia, 2018, 812, 147-155.	1.0	32
49	Differences in tolerance of pondweeds and charophytes to vertebrate herbivores in a shallow Baltic estuary. Aquatic Botany, 2010, 93, 123-128.	0.8	31
50	Classifying nuisance submerged vegetation depending on ecosystem services. Limnology, 2019, 20, 55-68.	0.8	31
51	Interactive Effects of Rising Temperature and Nutrient Enrichment on Aquatic Plant Growth, Stoichiometry, and Palatability. Frontiers in Plant Science, 2020, 11, 58.	1.7	31
52	Effects of contrasting omnivorous fish on submerged macrophyte biomass in temperate lakes: a mesocosm experiment. Freshwater Biology, 2012, 57, 1360-1372.	1.2	30
53	Experimental evidence for enhanced top-down control of freshwater macrophytes with nutrient enrichment. Oecologia, 2014, 176, 825-836.	0.9	30
54	Ectothermic omnivores increase herbivory in response to rising temperature. Oikos, 2020, 129, 1028-1039.	1.2	30

#	Article	IF	CITATIONS
55	The Good, the Bad and the Plenty: Interactive Effects of Food Quality and Quantity on the Growth of Different Daphnia Species. PLoS ONE, 2012, 7, e42966.	1.1	29
56	Effects of warming on Potamogeton crispus growth and tissue stoichiometry in the growing season. Aquatic Botany, 2016, 128, 13-17.	0.8	29
57	Frugivory underpins the nitrogen cycle. Functional Ecology, 2021, 35, 357-368.	1.7	28
58	Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release. Hydrobiologia, 2016, 778, 209-220.	1.0	27
59	Iron addition as a shallow lake restoration measure: impacts on charophyte growth. Hydrobiologia, 2013, 710, 241-251.	1.0	26
60	Testing the stress gradient hypothesis in herbivore communities: facilitation peaks at intermediate nutrient levels. Ecology, 2013, 94, 1776-1784.	1.5	26
61	Iron addition as a measure to restore water quality: Implications for macrophyte growth. Aquatic Botany, 2014, 116, 44-52.	0.8	26
62	Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and nonâ€native plants. Oikos, 2017, 126, 1770-1779.	1.2	26
63	Effects of cattle and rabbit grazing on clonal expansion of spiny shrubs in wood-pastures. Basic and Applied Ecology, 2010, 11, 685-692.	1.2	23
64	The role of plant secondary metabolites in freshwater macrophyte–herbivore interactions. , 2012, , 154-169.		23
65	Seagrass coastal protection services reduced by invasive species expansion and megaherbivore grazing. Journal of Ecology, 2020, 108, 2025-2037.	1.9	23
66	High Grazing Pressure of Geese Threatens Conservation and Restoration of Reed Belts. Frontiers in Plant Science, 2018, 9, 1649.	1.7	22
67	Climate Extremes, Rewilding, and the Role of Microhabitats. One Earth, 2020, 2, 506-509.	3.6	22
68	The impact of bird herbivory on macrophytes and the resilience of the clear-water state in shallow lakes: a model study. Hydrobiologia, 2016, 777, 197-207.	1.0	21
69	Aquatic grazers reduce the establishment and growth of riparian plants along an environmental gradient. Freshwater Biology, 2013, 58, 1794-1803.	1.2	19
70	Herbivores Enforce Sharp Boundaries Between Terrestrial and Aquatic Ecosystems. Ecosystems, 2014, 17, 1426-1438.	1.6	19
71	Invasive species in inland waters: from early detection to innovative management approaches. Aquatic Invasions, 2017, 12, 269-273.	0.6	19
72	Periphyton density is similar on native and nonâ€native plant species. Freshwater Biology, 2017, 62, 906-915.	1.2	17

#	Article	IF	CITATIONS
73	On the move: New insights on the ecology and management of native and alien macrophytes. Aquatic Botany, 2020, 162, 103190.	0.8	16
74	Impacts of sediment resuspension on phytoplankton biomass production and trophic transfer: Implications for shallow lake restoration. Science of the Total Environment, 2022, 808, 152156.	3.9	16
75	Flooding tolerance and horizontal expansion of wetland plants: Facilitation by floating mats?. Aquatic Botany, 2014, 113, 83-89.	0.8	15
76	Enhancing ecological integrity while preserving ecosystem services: Constructing softâ€sediment islands in a shallow lake. Ecological Solutions and Evidence, 2021, 2, e12098.	0.8	15
77	Aquatic omnivores shift their trophic position towards increased plant consumption as plant stoichiometry becomes more similar to their body stoichiometry. PLoS ONE, 2018, 13, e0204116.	1.1	14
78	Impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grasslands. , 2003, 14, 465.		14
79	Managing Successional Stage Heterogeneity to Maximize Landscape-Wide Biodiversity of Aquatic Vegetation in Ditch Networks. Frontiers in Plant Science, 2018, 9, 1013.	1.7	13
80	Direct and indirect effects of native plants and herbivores on biotic resistance to alien aquatic plant invasions. Journal of Ecology, 2020, 108, 1487-1496.	1.9	13
81	A seed dispersal effectiveness framework across the mutualism–antagonism continuum. Oikos, 2022, 2022, .	1.2	13
82	Locomotion during digestion changes current estimates of seed dispersal kernels by fish. Functional Ecology, 2016, 30, 215-225.	1.7	12
83	Combined effects of shading and clipping on the invasive alien macrophyte Elodea nuttallii. Aquatic Botany, 2019, 154, 24-27.	0.8	11
84	Herbivore exclusion and active planting stimulate reed marsh development on a newly constructed archipelago. Ecological Engineering, 2022, 175, 106474.	1.6	11
85	Impacts of shelter on the relative dominance of primary producers and trophic transfer efficiency in aquatic food webs: Implications for shallow lake restoration. Freshwater Biology, 2022, 67, 1107-1122.	1.2	11
86	Temperature affects carbon and nitrogen stable isotopic signatures of aquatic plants. Aquatic Sciences, 2021, 83, 1.	0.6	8
87	Aquatic herbivores facilitate the emission of methane from wetlands. Ecology, 2011, 92, 1166-1173.	1.5	8
88	Potential for biotic resistance from herbivores to tropical and subtropical plant invasions in aquatic ecosystems. Aquatic Invasions, 2017, 12, 343-353.	0.6	8
89	Differential effects of elevated <scp><i>p</i>CO₂</scp> and warming on marine phytoplankton stoichiometry. Limnology and Oceanography, 2022, 67, 598-607.	1.6	8
90	Plant functional diversity and nutrient availability can improve restoration of floating fens via facilitation, complementarity and selection effects. Journal of Applied Ecology, 2019, 56, 235-245.	1.9	7

#	Article	IF	CITATIONS
91	Herbivore phenology can predict response to changes in plant quality by livestock grazing. Oikos, 2020, 129, 811-819.	1.2	7
92	Species identity and diversity effects on invasion resistance of tropical freshwater plant communities. Scientific Reports, 2020, 10, 5626.	1.6	7
93	Longâ€term crossâ€scale comparison of grazing and mowing on plant diversity and community composition in a saltâ€marsh system. Journal of Ecology, 2021, 109, 3737-3747.	1.9	6
94	Fish grazing enhanced by nutrient enrichment may limit invasive seagrass expansion. Aquatic Botany, 2022, 176, 103464.	0.8	5
95	Nature development in degraded landscapes: How pioneer bioturbators and water level control soil subsidence, nutrient chemistry and greenhouse gas emission. Pedobiologia, 2021, 87-88, 150745.	0.5	4
96	SPATIAL HETEROGENEITY, NOT VISITATION BIAS, DOMINATES VARIATION IN HERBIVORY: REPLY. Ecology, 2004, 85, 2906-2910.	1.5	3
97	A Device to Study the Behavioral Responses of Zooplankton to Food Quality and Quantity. Journal of Insect Behavior, 2013, 26, 453-465.	0.4	2
98	Submerged vegetation colonizes behind artificial wave shelter after a 10-year time-lag and persists under high grazing pressure by waterbirds. Aquatic Botany, 2022, 181, 103541.	0.8	2
99	Host location success of root-feeding nematodes in patches that differ in size and quality: A belowground release-recapture experiment. Basic and Applied Ecology, 2012, 13, 221-231.	1.2	1
100	Herbivore size matters for productivityâ€richness relationships in African savannas: Commentary on Burkepile <i>etÂal</i> . (2017). Journal of Ecology, 2017, 105, 687-689.	1.9	1
101	Perspectives on a Way Forward to Implementation of Precision Medicine in Patients With Diabetic Kidney Disease; Results of a Stakeholder Consensus-Building Meeting. Frontiers in Pharmacology, 2021, 12, 662642.	1.6	1
102	Impact of native and non-native aquatic plants on methane emission and phytoplankton growth. Aquatic Invasions, 2017, 12, 371-383.	0.6	1