## Jaap G Neels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5220099/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Diabetes-Induced Changes in Macrophage Biology Might Lead to Reduced Risk for Abdominal Aortic<br>Aneurysm Development. Metabolites, 2022, 12, 128.                                                                                            | 1.3  | 1         |
| 2  | Invalidation of the Transcriptional Modulator of Lipid Metabolism PPARβ/δ in T Cells Prevents<br>Age-Related Alteration of Body Composition and Loss of Endurance Capacity. Frontiers in Physiology,<br>2021, 12, 587753.                      | 1.3  | 4         |
| 3  | Alphaâ€lipoic acid supplementation increases the efficacy of exercise―and dietâ€induced obesity treatment<br>and induces immunometabolic changes in female mice and women. FASEB Journal, 2021, 35, e21312.                                    | 0.2  | 8         |
| 4  | Regulation of Monocytes/Macrophages by the Renin–Angiotensin System in Diabetic Nephropathy:<br>State of the Art and Results of a Pilot Study. International Journal of Molecular Sciences, 2021, 22,<br>6009.                                 | 1.8  | 7         |
| 5  | Roles of Nuclear Receptors in Vascular Calcification. International Journal of Molecular Sciences, 2021, 22, 6491.                                                                                                                             | 1.8  | 3         |
| 6  | Gene Doping with Peroxisome-Proliferator-Activated Receptor Beta/Delta Agonists Alters Immunity but<br>Exercise Training Mitigates the Detection of Effects in Blood Samples. International Journal of<br>Molecular Sciences, 2021, 22, 11497. | 1.8  | 1         |
| 7  | Nuclear receptors in abdominal aortic aneurysms. Atherosclerosis, 2020, 297, 87-95.                                                                                                                                                            | 0.4  | 5         |
| 8  | Complementary Immunometabolic Effects of Exercise and PPARβ/δ Agonist in the Context of Diet-Induced<br>Weight Loss in Obese Female Mice. International Journal of Molecular Sciences, 2019, 20, 5182.                                         | 1.8  | 8         |
| 9  | GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through<br>an NF-κB-Dependent Mechanism. Cancer Cell, 2019, 36, 268-287.e10.                                                                            | 7.7  | 34        |
| 10 | Decrease in αβ/γδTâ€cell ratio is accompanied by a reduction in highâ€fat dietâ€induced weight gain, insulin<br>resistance, and inflammation. FASEB Journal, 2019, 33, 2553-2562.                                                              | 0.2  | 11        |
| 11 | Investigation of Plasma Inflammatory Profile in Diabetic Patients With Abdominal Aortic Aneurysm: A<br>Pilot Study. Vascular and Endovascular Surgery, 2018, 52, 597-601.                                                                      | 0.3  | 6         |
| 12 | Regulation of Immune Cell Function by PPARs and the Connection with Metabolic and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2018, 19, 1575.                                                                     | 1.8  | 41        |
| 13 | Peroxisome Proliferator Activated Receptor Beta (PPAR $\hat{i}^2$ ) activity increases the immune response and shortens the early phases of skeletal muscle regeneration. Biochimie, 2017, 136, 33-41.                                         | 1.3  | 7         |
| 14 | A role for Peroxisome Proliferator-Activated Receptor Beta in T cell development. Scientific Reports, 2016, 6, 34317.                                                                                                                          | 1.6  | 19        |
| 15 | αâ€Lipoic acid upâ€regulates expression of peroxisome proliferatorâ€activated receptor b in skeletal muscle:<br>involvement of the JNK signaling pathway. FASEB Journal, 2016, 30, 1287-1299.                                                  | 0.2  | 17        |
| 16 | Physiological Functions of Peroxisome Proliferator-Activated Receptor β. Physiological Reviews, 2014, 94, 795-858.                                                                                                                             | 13.1 | 133       |
| 17 | A role for 5-lipoxygenase products in obesity-associated inflammation and insulin resistance.<br>Adipocyte, 2013, 2, 262-265.                                                                                                                  | 1.3  | 22        |
| 18 | Adipocytes Secrete Leukotrienes. Diabetes, 2012, 61, 2311-2319.                                                                                                                                                                                | 0.3  | 90        |

JAAP G NEELS

| #  | Article                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Osteopontin Is Required for the Early Onset of High Fat Diet-Induced Insulin Resistance in Mice. PLoS<br>ONE, 2010, 5, e13959.                                                                                                                                                           | 1.1  | 71        |
| 20 | Keratinocyte-derived Chemokine in Obesity. Journal of Biological Chemistry, 2009, 284, 20692-20698.                                                                                                                                                                                      | 1.6  | 64        |
| 21 | Glucocorticoids and Thiazolidinediones Interfere with Adipocyte-mediated Macrophage Chemotaxis and Recruitment. Journal of Biological Chemistry, 2009, 284, 31223-31235.                                                                                                                 | 1.6  | 74        |
| 22 | Vitronectin inhibits plasminogen activator inhibitor-1-induced signalling and chemotaxis by blocking<br>plasminogen activator inhibitor-1 binding to the low-density lipoprotein receptor-related protein.<br>International Journal of Biochemistry and Cell Biology, 2009, 41, 578-585. | 1.2  | 32        |
| 23 | Ablation of CD11c-Positive Cells Normalizes Insulin Sensitivity in Obese Insulin Resistant Animals. Cell<br>Metabolism, 2008, 8, 301-309.                                                                                                                                                | 7.2  | 708       |
| 24 | Blockade of α4 Integrin Signaling Ameliorates the Metabolic Consequences of High-Fat Diet–Induced<br>Obesity. Diabetes, 2008, 57, 1842-1851.                                                                                                                                             | 0.3  | 40        |
| 25 | JNK1 in Hematopoietically Derived Cells Contributes to Diet-Induced Inflammation and Insulin Resistance without Affecting Obesity. Cell Metabolism, 2007, 6, 386-397.                                                                                                                    | 7.2  | 460       |
| 26 | A Subpopulation of Macrophages Infiltrates Hypertrophic Adipose Tissue and Is Activated by Free Fatty<br>Acids via Toll-like Receptors 2 and 4 and JNK-dependent Pathways. Journal of Biological Chemistry,<br>2007, 282, 35279-35292.                                                   | 1.6  | 840       |
| 27 | Bone marrow–specific Cap gene deletion protects against high-fat diet–induced insulin resistance.<br>Nature Medicine, 2007, 13, 455-462.                                                                                                                                                 | 15.2 | 110       |
| 28 | Autoamplification of Tumor Necrosis Factor-α. American Journal of Pathology, 2006, 168, 435-444.                                                                                                                                                                                         | 1.9  | 26        |
| 29 | CELL SIGNALING: A New Way to Burn Fat. Science, 2006, 312, 1756-1758.                                                                                                                                                                                                                    | 6.0  | 24        |
| 30 | Inflamed fat: what starts the fire?. Journal of Clinical Investigation, 2005, 116, 33-35.                                                                                                                                                                                                | 3.9  | 387       |
| 31 | Angiogenesis in an in vivo model of adipose tissue development. FASEB Journal, 2004, 18, 983-985.                                                                                                                                                                                        | 0.2  | 176       |
| 32 | The Low Density Lipoprotein Receptor-related Protein Is a Motogenic Receptor for Plasminogen<br>Activator Inhibitor-1. Journal of Biological Chemistry, 2004, 279, 22595-22604.                                                                                                          | 1.6  | 173       |
| 33 | Inhibition of Endogenous Leptin Protects Mice From Arterial and Venous Thrombosis.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2196-2201.                                                                                                                           | 1.1  | 86        |
| 34 | Disulfide Bonding Arrangements in Active Forms of the Somatomedin B Domain of Human<br>Vitronectinâ€. Biochemistry, 2004, 43, 6519-6534.                                                                                                                                                 | 1.2  | 37        |
| 35 | Interaction Between Factor VIII and LDL Receptor-related Protein Modulation of Coagulation?. Trends in Cardiovascular Medicine, 2000, 10, 8-14.                                                                                                                                          | 2.3  | 24        |
| 36 | Activation of factor IX zymogen results in exposure of a binding site for low-density lipoprotein receptor–related protein. Blood, 2000, 96, 3459-3465.                                                                                                                                  | 0.6  | 58        |

JAAP G NEELS

| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Activation of factor IX zymogen results in exposure of a binding site for low-density lipoprotein receptor–related protein. Blood, 2000, 96, 3459-3465.                                                                                                                    | 0.6 | 1         |
| 38 | The Second and Fourth Cluster of Class A Cysteine-rich Repeats of the Low Density Lipoprotein<br>Receptor-related Protein Share Ligand-binding Properties. Journal of Biological Chemistry, 1999, 274,<br>31305-31311.                                                     | 1.6 | 135       |
| 39 | The Light Chain of Factor VIII Comprises a Binding Site for Low Density Lipoprotein Receptor-related<br>Protein. Journal of Biological Chemistry, 1999, 274, 23734-23739.                                                                                                  | 1.6 | 187       |
| 40 | Selective Screening of a Large Phage Display Library of Plasminogen Activator Inhibitor 1 Mutants to Localize Interaction Sites with Either Thrombin or the Variable Region 1 of Tissue-type Plasminogen Activator. Journal of Biological Chemistry, 1996, 271, 7423-7428. | 1.6 | 31        |