
Haruka Endo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5220046/publications.pdf Version: 2024-02-01

Ηλριικλ Ενίδο

#	Article	IF	CITATIONS
1	The <scp>ATP</scp> â€binding cassette transporter subfamily C member 2 in <i><scp>B</scp>ombyxÂmori</i> larvae is a functional receptor for <scp>C</scp> ry toxins from <i><scp>B</scp>acillusÂthuringiensis</i> . FEBS Journal, 2013, 280, 1782-1794.	4.7	131
2	Function and Role of ATP-Binding Cassette Transporters as Receptors for 3D-Cry Toxins. Toxins, 2019, 11, 124.	3.4	47
3	Functional characterization of <i>Bacillus thuringiensis</i> Cry toxin receptors explains resistance in insects. FEBS Journal, 2016, 283, 4474-4490.	4.7	37
4	Factors functioning in nodule melanization of insects and their mechanisms of accumulation in nodules. Journal of Insect Physiology, 2014, 60, 40-49.	2.0	36
5	Expression of the fructose receptor BmGr9 and its involvement in the promotion of feeding, suggested by its co-expression with neuropeptide F1 in Bombyx mori. Insect Biochemistry and Molecular Biology, 2016, 75, 58-69.	2.7	36
6	Characterization of a ligand-gated cation channel based on an inositol receptor in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2016, 74, 12-20.	2.7	34
7	The domain II loops of Bacillus thuringiensis Cry1Aa form an overlapping interaction site for two Bombyx mori larvae functional receptors, ABC transporter C2 and cadherin-like receptor. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 220-231.	2.3	31
8	Extracellular loop structures in silkworm ABCC transporters determine their specificities for Bacillus thuringiensis Cry toxins. Journal of Biological Chemistry, 2018, 293, 8569-8577.	3.4	31
9	Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin. Insect Biochemistry and Molecular Biology, 2017, 91, 44-54.	2.7	30
10	Cry toxin specificities of insect ABCC transporters closely related to lepidopteran ABCC2 transporters. Peptides, 2017, 98, 86-92.	2.4	29
11	Expression of a sugar clade gustatory receptor, BmGr6, in the oral sensory organs, midgut, and central nervous system of larvae of the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 2016, 70, 85-98.	2.7	28
12	Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins. Peptides, 2016, 78, 99-108.	2.4	27
13	Water influx via aquaporin directly determines necrotic cell death induced by the <i>Bacillus thuringiensis</i> Cry toxin. FEBS Letters, 2017, 591, 56-64.	2.8	25
14	Insect taste receptors relevant to host identification by recognition of secondary metabolite patterns of non-host plants. Biochemical and Biophysical Research Communications, 2018, 499, 901-906.	2.1	23
15	Role of Bacillus thuringiensis Cry1A toxins domains in the binding to the ABCC2 receptor from Spodoptera exigua. Insect Biochemistry and Molecular Biology, 2018, 101, 47-56.	2.7	21
16	Mechanisms of nodule-specific melanization in the hemocoel of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2016, 70, 10-23.	2.7	19
17	Molecular and Kinetic Models for Pore Formation of Bacillus thuringiensis Cry Toxin. Toxins, 2022, 14, 433.	3.4	19
18	Affinity Maturation of Cry1Aa Toxin to the Bombyx mori Cadherin-Like Receptor by Directed Evolution. Molecular Biotechnology, 2013, 54, 888-899.	2.4	14

Haruka Endo

#	Article	IF	CITATIONS
19	Glucose, some amino acids and a plant secondary metabolite, chlorogenic acid induce the secretion of a regulatory hormone, tachykinin-related peptide, from the silkworm midgut. Peptides, 2018, 106, 21-27.	2.4	13
20	Diet choice: The two-factor host acceptance system of silkworm larvae. PLoS Biology, 2020, 18, e3000828.	5.6	10
21	The intracellular region of silkworm cadherin-like protein is not necessary to mediate the toxicity of Bacillus thuringiensis Cry1Aa and Cry1Ab toxins. Insect Biochemistry and Molecular Biology, 2018, 94, 36-41.	2.7	9
22	Affinity maturation of Cry1Aa toxin to the <i>Bombyx mori</i> cadherinâ€like receptor by directed evolution based on phage display and biopanning selections of domain <scp>II</scp> loop 2 mutant toxins. MicrobiologyOpen, 2014, 3, 568-577.	3.0	6
23	Ultrasensitive detection by maxillary palp neurons allows non-host recognition without consumption of harmful allelochemicals. Journal of Insect Physiology, 2021, 132, 104263.	2.0	3
24	Diet choice: The two-factor host acceptance system of silkworm larvae. , 2020, 18, e3000828.		0
25	Diet choice: The two-factor host acceptance system of silkworm larvae. , 2020, 18, e3000828.		0
26	Diet choice: The two-factor host acceptance system of silkworm larvae. , 2020, 18, e3000828.		0
27	Diet choice: The two-factor host acceptance system of silkworm larvae. , 2020, 18, e3000828.		0
28	Diet choice: The two-factor host acceptance system of silkworm larvae. , 2020, 18, e3000828.		0
29	Diet choice: The two-factor host acceptance system of silkworm larvae. , 2020, 18, e3000828.		0