
Takashi Matsuzaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5218908/publications.pdf Version: 2024-02-01

Τλέλομι Μλτουζλέλ

#	Article	IF	CITATIONS
1	Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nature Medicine, 2007, 13, 1193-1202.	15.2	459
2	SREBP1 Contributes to Resolution of Pro-inflammatory TLR4 Signaling by Reprogramming Fatty Acid Metabolism. Cell Metabolism, 2017, 25, 412-427.	7.2	263
3	Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. Journal of Lipid Research, 2002, 43, 911-920.	2.0	172
4	TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nature Medicine, 2006, 12, 107-113.	15.2	168
5	Insulin-Independent Induction of Sterol Regulatory Element-Binding Protein-1c Expression in the Livers of Streptozotocin-Treated Mice. Diabetes, 2004, 53, 560-569.	0.3	167
6	Elovl6 promotes nonalcoholic steatohepatitis. Hepatology, 2012, 56, 2199-2208.	3.6	144
7	Elovl6: a new player in fatty acid metabolism and insulin sensitivity. Journal of Molecular Medicine, 2009, 87, 379-384.	1.7	135
8	Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. Journal of Lipid Research, 2002, 43, 911-20.	2.0	133
9	Saturated Fatty Acids Undergo Intracellular Crystallization and Activate the NLRP3 Inflammasome in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 744-756.	1.1	104
10	Cholesterol accumulation and diabetes in pancreatic β-cell-specific SREBP-2 transgenic mice: a new model for lipotoxicity. Journal of Lipid Research, 2008, 49, 2524-2534.	2.0	95
11	KLF15 Enables Rapid Switching between Lipogenesis and Gluconeogenesis during Fasting. Cell Reports, 2016, 16, 2373-2386.	2.9	94
12	Deranged fatty acid composition causes pulmonary fibrosis in Elovl6-deficient mice. Nature Communications, 2013, 4, 2563.	5.8	77
13	Molecular mechanisms involved in hepatic steatosis and insulin resistance. Journal of Diabetes Investigation, 2011, 2, 170-175.	1.1	62
14	Granuphilin is activated by SREBP-1c and involved in impaired insulin secretion in diabetic mice. Cell Metabolism, 2006, 4, 143-154.	7.2	60
15	Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy. Biochemical and Biophysical Research Communications, 2015, 466, 536-540.	1.0	59
16	Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice. PLoS ONE, 2016, 11, e0157580.	1.1	50
17	Hepatic CREB3L3 Controls Whole-Body Energy Homeostasis and Improves Obesity and Diabetes. Endocrinology, 2014, 155, 4706-4719.	1.4	49
18	Molecular association model of PPARα and its new specific and efficient ligand, pemafibrate: Structural basis for SPPARMα. Biochemical and Biophysical Research Communications, 2018, 499, 239-245.	1.0	47

ΤΑΚΑSHI MATSUZAKA

#	Article	IF	CITATIONS
19	CREB3L3 controls fatty acid oxidation and ketogenesis in synergy with PPARα. Scientific Reports, 2016, 6, 39182.	1.6	45
20	Hepatocyte ELOVL Fatty Acid Elongase 6 Determines Ceramide Acyl hain Length and Hepatic Insulin Sensitivity in Mice. Hepatology, 2020, 71, 1609-1625.	3.6	44
21	The Peroxisome Proliferator-Activated Receptor α (PPARα) Agonist Pemafibrate Protects against Diet-Induced Obesity in Mice. International Journal of Molecular Sciences, 2018, 19, 2148.	1.8	43
22	Effects of K-877, a novel selective PPARα modulator, on small intestine contribute to the amelioration of hyperlipidemia in low-density lipoprotein receptor knockout mice. Journal of Pharmacological Sciences, 2017, 133, 214-222.	1.1	36
23	Selective peroxisome proliferatorâ€activated receptorâ€Î± modulator Kâ€877 efficiently activates the peroxisome proliferatorâ€activated receptorâ€Î± pathway and improves lipid metabolism in mice. Journal of Diabetes Investigation, 2017, 8, 446-452.	1.1	34
24	Macrophage Elovl6 Deficiency Ameliorates Foam Cell Formation and Reduces Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1973-1979.	1.1	32
25	Intestinal CREBH overexpression prevents high-cholesterol diet-induced hypercholesterolemia by reducing Npc111 expression. Molecular Metabolism, 2016, 5, 1092-1102.	3.0	32
26	Elongation of Longâ€Chain Fatty Acid Family Member 6 (Elovl6)â€Driven Fatty Acid Metabolism Regulates Vascular Smooth Muscle Cell Phenotype Through AMPâ€Activated Protein Kinase/Krüppelâ€Like Factor 4 (AMPK/KLF4) Signaling. Journal of the American Heart Association, 2016, 5, .	1.6	31
27	Hyperlipidemia and hepatitis in liver-specific CREB3L3 knockout mice generated using a one-step CRISPR/Cas9 system. Scientific Reports, 2016, 6, 27857.	1.6	31
28	Octacosanol and policosanol prevent high-fat diet-induced obesity and metabolic disorders by activating brown adipose tissue and improving liver metabolism. Scientific Reports, 2019, 9, 5169.	1.6	31
29	Elovl6 Deficiency Improves Glycemic Control in Diabetic <i>db</i> / <i>db</i> Mice by Expanding β-Cell Mass and Increasing Insulin Secretory Capacity. Diabetes, 2017, 66, 1833-1846.	0.3	29
30	1,8-Cineole Ameliorates Steatosis of Pten Liver Specific KO Mice via Akt Inactivation. International Journal of Molecular Sciences, 2015, 16, 12051-12063.	1.8	27
31	Effect of sodium-glucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry. Biochemical and Biophysical Research Communications, 2017, 493, 40-45.	1.0	22
32	Role of fatty acid elongase Elovl6 in the regulation of energy metabolism and pathophysiological significance in diabetes. Diabetology International, 2021, 12, 68-73.	0.7	22
33	Glucocorticoid receptor suppresses gene expression of Revâ€erbα (Nr1d1) through interaction with the <scp>CLOCK</scp> complex. FEBS Letters, 2019, 593, 423-432.	1.3	21
34	New perspective on typeÂ2 diabetes, dyslipidemia and nonâ€alcoholic fatty liver disease. Journal of Diabetes Investigation, 2020, 11, 532-534.	1.1	21
35	Identification of human ELOVL5 enhancer regions controlled by SREBP. Biochemical and Biophysical Research Communications, 2015, 465, 857-863.	1.0	20
36	Absence of Elovl6 attenuates steatohepatitis but promotes gallstone formation in a lithogenic diet-fed Ldlrâ^'/â^' mouse model. Scientific Reports, 2015, 5, 17604.	1.6	20

ΤΑΚΑSHI MATSUZAKA

#	Article	IF	CITATIONS
37	Elovl6 regulates mechanical damage-induced keratinocyte death and skin inflammation. Cell Death and Disease, 2018, 9, 1181.	2.7	19
38	Novel nonâ€alcoholic steatohepatitis model with histopathological and insulinâ€resistant features. Pathology International, 2018, 68, 12-22.	0.6	17
39	ELOVL2 promotes cancer progression by inhibiting cell apoptosis in renal cell carcinoma. Oncology Reports, 2021, 47, .	1.2	17
40	Macrophages rely on extracellular serine to suppress aberrant cytokine production. Scientific Reports, 2021, 11, 11137.	1.6	16
41	Intestinal microbe-dependent ω3 lipid metabolite αKetoA prevents inflammatory diseases in mice and cynomolgus macaques. Mucosal Immunology, 2022, 15, 289-300.	2.7	16
42	Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A metaâ€analysis. Journal of Diabetes Investigation, 2022, 13, 900-908.	1.1	16
43	Ablation of Elovl6 protects pancreatic islets from high-fat diet-induced impairment of insulin secretion. Biochemical and Biophysical Research Communications, 2014, 450, 318-323.	1.0	15
44	A key role of nuclear factor Y in the refeeding response of fatty acid synthase in adipocytes. FEBS Letters, 2017, 591, 965-978.	1.3	15
45	Insulinâ€dependent and â€independent regulation of sterol regulatory elementâ€binding proteinâ€1c. Journal of Diabetes Investigation, 2013, 4, 411-412.	1.1	14
46	Transgenic Mice Overexpressing SREBP-1a in Male ob/ob Mice Exhibit Lipodystrophy and Exacerbate Insulin Resistance. Endocrinology, 2018, 159, 2308-2323.	1.4	14
47	Transcriptional co-repressor CtBP2 orchestrates epithelial-mesenchymal transition through a novel transcriptional holocomplex with OCT1. Biochemical and Biophysical Research Communications, 2020, 523, 354-360.	1.0	12
48	CREBH Improves Diet-Induced Obesity, Insulin Resistance, and Metabolic Disturbances by FGF21-Dependent and FGF21-Independent Mechanisms. IScience, 2020, 23, 100930.	1.9	12
49	The transcriptional corepressor CtBP2 serves as a metabolite sensor orchestrating hepatic glucose and lipid homeostasis. Nature Communications, 2021, 12, 6315.	5.8	12
50	Enterohepatic Transcription Factor CREB3L3 Protects Atherosclerosis via SREBP Competitive Inhibition. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 949-971.	2.3	11
51	Rapid manipulation of mitochondrial morphology in a living cell with iCMM. Cell Reports Methods, 2021, 1, 100052.	1.4	10
52	A candidate functional <scp>SNP</scp> rs7074440 in <i><scp>TCF</scp>7L2</i> alters gene expression through Câ€ <scp>FOS</scp> in hepatocytes. FEBS Letters, 2018, 592, 422-433.	1.3	9
53	Oxidative stress and Liver X Receptor agonist induce hepatocellular carcinoma in Nonâ€alcoholic steatohepatitis model. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 800-810.	1.4	9
54	Crucial Role of Elovl6 in Chondrocyte Growth and Differentiation during Growth Plate Development in Mice. PLoS ONE, 2016, 11, e0159375.	1.1	8

Τακαςμι Ματςυζακα

#	Article	IF	CITATIONS
55	Evaluation of safety for hepatectomy in a novel mouse model with nonalcoholic-steatohepatitis. World Journal of Gastroenterology, 2018, 24, 1622-1631.	1.4	7
56	Advanced Oxidation Protein Products Contribute to Renal Tubulopathy via Perturbation of Renal Fatty Acids. Kidney360, 2020, 1, 781-796.	0.9	6
57	Starvationâ€induced transcription factor CREBH negatively governs body growth by controlling GH signaling. FASEB Journal, 2021, 35, e21663.	0.2	6
58	High protein diet-induced metabolic changes are transcriptionally regulated via KLF15-dependent and independent pathways. Biochemical and Biophysical Research Communications, 2021, 582, 35-42.	1.0	6
59	FoxO-KLF15 pathway switches the flow of macronutrients under the control of insulin. IScience, 2021, 24, 103446.	1.9	6
60	GLUT12: a second insulinâ€responsive glucose transporters as an emerging target for type 2 diabetes. Journal of Diabetes Investigation, 2012, 3, 130-131.	1.1	5
61	CtBP2 confers protection against oxidative stress through interactions with NRF1 and NRF2. Biochemical and Biophysical Research Communications, 2021, 562, 146-153.	1.0	5
62	Serum lactate dehydrogenase level as a possible predictor of treatment preference in psoriasis. Journal of Dermatological Science, 2021, 103, 109-115.	1.0	5
63	Novel role for the <scp>CRTC</scp> 2 in lipid homeostasis. Journal of Diabetes Investigation, 2016, 7, 677-679.	1.1	4
64	Rhoâ€associated, coiledâ€coilâ€containing protein kinaseÂ1 as a new player in the regulation of hepatic lipogenesis. Journal of Diabetes Investigation, 2019, 10, 1165-1167.	1.1	4
65	Morphological and functional adaptation of pancreatic islet blood vessels to insulin resistance is impaired in diabetic db/db mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166339.	1.8	4
66	New liver–βâ€cell axis that controls insulin secretory capacity. Journal of Diabetes Investigation, 2014, 5, 276-277.	1.1	2
67	CREBH regulation of lipid metabolism through multifaceted functions that improve arteriosclerosis. Journal of Diabetes Investigation, 2022, 13, 1129-1131.	1.1	0