Miguel Angel Iglesias Duro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5218286/publications.pdf

Version: 2024-02-01

81 papers 1,860 citations

257450 24 h-index 302126 39 g-index

82 all docs 82 docs citations

times ranked

82

1029 citing authors

#	Article	IF	Citations
1	Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and) Tj ETQq1 1	1 0.784314 2.5	rgBT/Overlock
2	Refractive indices, densities and excess properties on mixing of the systems acetone + methanol + water and acetone + methanol + 1-butanol at 298.15 K. Fluid Phase Equilibria, 1996, 126, 203-223.	2.5	106
3	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF)+short hydroxylic solvents}. Journal of Chemical Thermodynamics, 2008, 40, 119-133.	2.0	85
4	New Short Aliphatic Chain Ionic Liquids:  Synthesis, Physical Properties, and Catalytic Activity in Aldol Condensations. Journal of Physical Chemistry B, 2007, 111, 12468-12477.	2.6	83
5	BrÃ,nsted ionic liquids: Study of physico-chemical properties and catalytic activity in aldol condensations. Chemical Engineering Journal, 2010, 162, 802-808.	12.7	78
6	Temperature dependence of excess molar volumes in (n-alkane (C6–C9) or alcohol (C2–C4))+olive oil mixtures. Thermochimica Acta, 1999, 328, 277-296.	2.7	52
7	Density, Refractive Index, and Speed of Sound at 298.15 K and Vaporâ^'Liquid Equilibria at 101.3 kPa for Binary Mixtures of Ethyl Acetate + 1-Pentanol and Ethanol + 2-Methyl-1-propanol. Journal of Chemical & Engineering Data, 2004, 49, 804-808.	1.9	50
8	Derived Properties of Binary Mixtures Containing (Acetone or Methanol) + Hydroxil Compounds. Physics and Chemistry of Liquids, 2001, 39, 99-116.	1.2	47
9	Thermodynamics of (anisole + benzene, or toluene, orn-hexane, or cyclohexane, or 1-butanol, or) Tj ETQq1 1 C).784314 rg 2.0	gBT /Qverlock I
10	Temperature Dependence of Excess Molar Volumes of Ethanol + Water + Ethyl Acetate. Journal of Solution Chemistry, 2004, 33, 169-198.	1.2	41
11	Effect of Temperature on the Refractive Index of Aliphatic Hydroxilic Mixtures (C2–C3). International Journal of Thermophysics, 2002, 23, 513-527.	2.1	40
12	Thermodynamic behaviour of mixtures containing methyl acetate, methanol, and 1-butanol at 298.15 K: application of the ERAS model. Fluid Phase Equilibria, 1998, 147, 285-300.	2.5	35
13	Thermodynamic properties of the mixture benzene+cyclohexane+2-methyl-2-butanol at the temperature 298.15 K: excess molar volumes prediction by application of cubic equations of state. Fluid Phase Equilibria, 1999, 154, 123-138.	2.5	35
14	Thermodynamics of oxygenate fuel additives as a function of temperature. Physics and Chemistry of Liquids, 2008, 46, 223-237.	1.2	35
15	Liquidâ^'Liquid Equilibrium Diagrams of Ethanol + Water + (Ethyl Acetate or 1-Pentanol) at Several Temperatures. Journal of Chemical & Data, 2006, 51, 1300-1305.	1.9	31
16	Temperature influence on solution properties of ethanol + n-alkane mixtures. Journal of Molecular Liquids, 2007, 135, 105-114.	4.9	31
17	Excess volumes of binary mixtures of vinyl acetate and aromatic hydrocarbons. Journal of Chemical Thermodynamics, 2001, 33, 723-732.	2.0	30
18	Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa. Physics and Chemistry of Liquids, 2011, 49, 52-71.	1.2	30

#	Article	IF	CITATIONS
19	Thermodynamic Properties of Alkanediols+Acetates at 298.15 K. Magyar Apróvad Közlemények, 1998, 52, 915-932.	1.4	28
20	Thermodynamics of binary mixtures of aliphatic linear alkanes (C6–C12) at 298.15 K. Physics and Chemistry of Liquids, 2004, 42, 37-51.	1.2	28
21	Effect of Temperature on the Change of Refractive Index on Mixing for Butyl Acetate + Aromatic Hydrocarbons. International Journal of Thermophysics, 2005, 26, 1437-1459.	2.1	28
22	Densities, Refractive Indices, Speeds of Sound, and Isentropic Compressibilities of Benzene + Cyclohexane + 1-Pentanol at 298.15 K. Journal of Chemical & Engineering Data, 1995, 40, 260-263.	1.9	27
23	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)Â+ÂGasoline Additives. International Journal of Thermophysics, 2007, 28, 1199-1227.	2.1	27
24	Temperature influence on refractive indices and isentropic compressibilities of alcohol (C2–C4)+olive oil mixtures. Journal of Food Engineering, 2001, 50, 29-40.	5.2	26
25	Influence of temperature on ultrasonic velocity measurements of ethanol+water+1-propanol mixtures. Journal of Thermal Analysis and Calorimetry, 2007, 87, 237-245.	3.6	25
26	Ultrasonic velocity measurements for butyl acetate+hydrocarbon mixtures. Physics and Chemistry of Liquids, 2004, 42, 521-543.	1.2	23
27	Influence of temperature on ultrasonic velocity measurements of ethanol + water + ethyl aceta mixtures. Physics and Chemistry of Liquids, 2005, 43, 65-89.	ite 1.2	23
28	Intermolecular interactions in soybean oil+different organic solvents by ultrasonic velocity measurements. Journal of Food Engineering, 2006, 77, 152-161.	5.2	22
29	Influence of temperature on thermodynamic properties of substituted aromatic compounds. Physics and Chemistry of Liquids, 2010, 48, 257-271.	1.2	22
30	Liquid phase behaviour and thermodynamics of acetone+methanol+n-alkane (C9–C12) mixtures. Fluid Phase Equilibria, 2003, 206, 61-85.	2.5	20
31	Mixing properties of isopropyl acetate+aromatic hydrocarbons at 298.15 K: Density, refractive index and isentropic compressibility. Korean Journal of Chemical Engineering, 2004, 21, 1015-1025.	2.7	20
32	Temperature dependence of the derived properties of mixtures containing chlorobenzene and aliphatic linear alkanes (C ₆ –C ₁₂). Physics and Chemistry of Liquids, 2010, 48, 661-681.	1.2	19
33	Densities, refractive indices, and derived excess properties of $\{x1CH3COCH3+x2CH3OH+(1 \hat{a}^*x1\hat{a}^*x2)$ CH3CH(OH)CH3 $\}$ at the temperature 298.15K. Journal of Chemical Thermodynamics, 1995, 27, 1161-1167.	2.0	18
34	Thermodynamic properties of the system (acetone + methanol+n -heptane) atT= 298.15 K. Journal of Chemical Thermodynamics, 2000, 32, 483-497.	2.0	18
35	Temperature influence on mixing properties of {ethyl tert-butyl ether (ETBE)+gasoline additives}. Journal of Chemical Thermodynamics, 2007, 39, 1557-1564.	2.0	18
36	Study of fuel oxygenates solubility in aqueous media as a function of temperature and tert-butyl alcohol concentration. Chemosphere, 2008, 71, 2098-2105.	8.2	18

#	Article	IF	CITATIONS
37	Influence of temperature on excess molar volumes for butyl acetate + aromatic hydrocarbons. Physics and Chemistry of Liquids, 2004, 42, 493-520.	1.2	17
38			

#	Article	lF	CITATIONS
55	Volumetric properties prediction by cubic EOS for non-ideal mixtures: application to the ternary system acetone+methanol+n-hexane. Thermochimica Acta, 1999, 328, 265-275.	2.7	11
56	Thermodynamic Properties of the Mixture Acetone + Methanol + n-Octane at $25 \hat{A}^{\circ}$ C. Journal of Solution Chemistry, 2001, 30, 133-148.	1.2	11
57	Excess molar volumes of the ternary mixtures chlorobenzene+n-hexane+linear aliphatic alkane (C11–C12) at 298.15 K. Journal of Molecular Liquids, 2005, 122, 87-94.	4.9	11
58	Thermodynamics and Kinetics of Fuel Oxygenate Adsorption into Granular Activated Carbon. Journal of Chemical & Carbon. Journal of Chemical & Carbon. Journal Oxygenate Adsorption into Granular Activated Carbon. Journal Oxygenate Advanced Ca	1.9	11
59	Measurement and Modeling of Phase Equilibria for Ethanol + Water + Methanol at Isobaric Condition. Journal of Chemical & Description (2006, 51, 2114-2120).	1.9	10
60	Azeotropic behaviour of (benzene+cyclohexane+chlorobenzene) ternary mixture using chlorobenzene as entrainer at 101.3kPa. Journal of Chemical Thermodynamics, 2006, 38, 1725-1736.	2.0	10
61	Alanine-supported protic ionic liquids as efficient catalysts for aldol condensation reactions. Comptes Rendus Chimie, 2014, 17, 18-22.	0.5	10
62	Vapor-Liquid Equilibria for the Ternary System Acetone + Methanol + Chlorobenzene at 101.325 kPa. Journal of Chemical & Data, 1995, 40, 1203-1205.	1.9	8
63	Densities and Refractive Indices of Acetone + Methanol + 2-Methyl-2-butanol at 298.15 K. Journal of Chemical &	1.9	8
64	Changes of refractive indices of the ternary mixtures chlorobenzene +n-hexane + (n-nonane) Tj ETQq0 0 0 rgBT /0	Overlock 1 1.2	0 Tf 50 382 1
65	Excess molar volumes of ternary mixtures containing benzene, cyclohexane, 1-pentanol and anisole at 298.15 K. Physics and Chemistry of Liquids, 2005, 43, 551-557.	1.2	8
66	Mixing properties and derived magnitudes of the system {x1 CH3COOCH3+x2 CH3OH+(1â^'x1 â^'x2) Tj ETQq0 0	0_rgBT /O	verlock 10 Tf
67	Measurement and modelling of phase equilibria for ethanol+water+1-pentanol at isobaric condition. Korean Journal of Chemical Engineering, 2006, 23, 631-637.	2.7	7
68	Densities and refractive indices of $\{x1CH3COCH3+x2CH3OH+(1 \hat{a}^*x1\hat{a}^*x2)CH3(CH2)4OH\}$ at the temperature 298.15 K. Journal of Chemical Thermodynamics, 1995, 27, 253-258.	2.0	6
69	Vapor–liquid equilibria for binary mixtures containing ethyl tert butyl ether (ETBE) + (p-xylene,m-xylen	e) _{1.2} ETQq	1 1 0.78431
70	Proton Conducting Polymer Membrane Using The Ionic Liquid 2-Hydroxyethylammonium Lactate For Ethanol Fuel Cells. AIP Conference Proceedings, 2011, , .	0.4	6
71	Thermodynamics of Water-Air Transfer of Fuel Oxygenates by the Dynamic Method of Batch Air Stripping: Experimental Study of Temperature and Cosolvency Effects. Separation Science and Technology, 2009, 44, 3615-3631.	2.5	5
72	Isentropic compressibilities of chlorobenzene + n-hexane + (n-undecane orn-dodecane) at 298.15â€ Physics and Chemistry of Liquids, 2011, 49, 519-529.	€%. <u>K</u> .	5

#	Article	IF	CITATIONS
73	Changes in refractive indices of ternary mixtures containing benzene, cyclohexane, 1-pentanol, and anisole at T=298.15 K. Journal of Chemical Thermodynamics, 2001, 33, 555-564.	2.0	4
74	(Vapour + liquid) equilibria for the ternary system (benzene+ cyclohexane + anisole) at p= 101.32 kPa. Journal of Chemical Thermodynamics, 2001 , 33 , $1765-1776$.	2.0	4
75	Phase behaviour of ethanol + water + ethyl acetate at 101.3 kPa. Physics and Chemistry of Liquids, 2010, 48, 461-476.	1.2	4
76	Isobaric phase equilibrium of the ternary mixture ethanol + water + 2-propanol and Chemistry of Liquids, 2007, 45, 683-694.	. Physics 1.2	3
77	Excess molar volumes of the ternary mixtures chlorobenzene + n-Hexane + linear aliphatic alkar (C7-C8) at 298.15 K. Physics and Chemistry of Liquids, 2011, 49, 708-719.	ıe 1.2	3
78	Structural and Aggregation Study of Protic Ionic Liquids. , 2011, , .		2
79	Fluid Phase Topology of Benzene + Cyclohexane + 1-Propanol at 101.3Â kPa. International Journal of Thermophysics, 2015, 36, 1498-1518.	2.1	1
80	Changes of Refractive Indices for the Ternary Mixture Acetone + Methanol + $\langle i \rangle N \langle i \rangle$ -Hexane at 288.15 and 298.15 K. Physics and Chemistry of Liquids, 1999, 37, 741-756.	1.2	0
81	Fluid phase topology of ethanol+benzene+cyclohexane at 101.3 kPa. Physics and Chemistry of Liquids, 2006, 44, 607-621.	1.2	О