Jose Manuel Mendoza-Rangel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5218086/publications.pdf

Version: 2024-02-01

23 451 12 21 g-index

23 23 23 23 402

times ranked

citing authors

docs citations

all docs

#	Article	lF	Citations
1	Influence of fibers distribution on direct shear and flexural behavior of synthetic fiber-reinforced self-compacting concrete. Construction and Building Materials, 2022, 330, 127255.	3.2	9
2	Effect of Clâ ⁻ '-induced corrosion on the mechanical properties of reinforcing steel embedded in ternary concretes containing FA and UtSCBA. Construction and Building Materials, 2022, 339, 127655.	3.2	5
3	Effect of the Addition of Sugar Cane Bagasse Ash on the Compaction Properties of a Granular Material Type Hydraulic Base. European Journal of Engineering Research and Science, 2021, 6, 76-79.	0.3	2
4	Electrochemical Corrosion of Galvanized Steel in Binary Sustainable Concrete Made with Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF) Exposed to Sulfates. Applied Sciences (Switzerland), 2021, 11, 2133.	1.3	16
5	Chloride-binding capacity of ternary concretes containing fly ash and untreated sugarcane bagasse ash. Cement and Concrete Composites, 2021, 120, 104040.	4.6	18
6	Physical, Mechanical and Durability Properties of Ecofriendly Ternary Concrete Made with Sugar Cane Bagasse Ash and Silica Fume. Crystals, 2021, 11, 1012.	1.0	6
7	Effect of the Notch-to-Depth Ratio on the Post-Cracking Behavior of Steel-Fiber-Reinforced Concrete. Materials, 2021, 14, 445.	1.3	4
8	Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials, 2020, 13, 4345.	1.3	19
9	Corrosion Behavior of AISI 304 Stainless Steel Reinforcements in SCBA-SF Ternary Ecological Concrete Exposed to MgSO4. Materials, 2020, 13, 2412.	1.3	23
10	Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated With Chlorides. Frontiers in Materials, 2019, 6, .	1.2	16
11	Thixotropy of reactive suspensions: The case of cementitious materials. Construction and Building Materials, 2019, 212, 121-129.	3.2	10
12	Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials, 2019, 12, 4007.	1.3	37
13	Chloride-induced reinforcing steel corrosion in ternary concretes containing fly ash and untreated sugarcane bagasse ash. Construction and Building Materials, 2019, 198, 608-618.	3.2	40
14	Compaction effect on the compressive strength and durability of stabilized earth blocks. Construction and Building Materials, 2018, 163, 179-188.	3.2	39
15	Improving Sustainability through Corrosion Resistance of Reinforced Concrete by Using a Manufactured Blended Cement and Fly Ash. Sustainability, 2018, 10, 2004.	1.6	9
16	Influencia de la inclusión de ceniza de bagazo de caña de azúcar sobre la compactación, CBR y resistencia a la compresión simple de un material granular tipo subrasante. Revista ALCONPAT, 2018, 8, 194-208.	0.2	15
17	Low impact fiber reinforced material composite. Revista ALCONPAT, 2017, 7, 135-147.	0.2	5
18	Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash. Construction and Building Materials, 2016, 105, 69-81.	3.2	96

JOSE MANUEL

#	Article	IF	CITATIONS
19	Efecto de la ceniza volante en las propiedades mecánicas de concretos hechos con agregado calizo triturado de alta absorción. Revista ALCONPAT, 2016, 6, 235-247.	0.2	2
20	Chemical Interactions in Reinforced Concrete Exposed at a Tropical Marine Environment. Journal of Chemistry, 2015, 2015, 1-5.	0.9	1
21	Accelerated and natural carbonation of concretes with internal curing and shrinkage/viscosity modifiers. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1207-1214.	1.3	22
22	Modified gypsum compounds: An ecological–economical choice to improve traditional plasters. Construction and Building Materials, 2012, 37, 591-596.	3.2	57
23	Validez de los conceptos y modelos vigentes de vida de servicio de estructuras de hormigón ante los efectos del cambio climático global. Situación actual. Materiales De Construccion, 2009, 59, 117-124.	0.2	0