Xinying Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5218070/publications.pdf Version: 2024-02-01

XINVING TENC

#	Article	IF	CITATIONS
1	Effect of Al2O3 particle size on the mechanical properties of alumina-based ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 545-551.	2.6	103
2	Effect of P and Sr complex modification on Si phase in hypereutectic Al–30Si alloys. Materials & Design, 2013, 47, 857-864.	5.1	80
3	Crystallization kinetics of an amorphous Zr–Cu–Ni alloy: calculation of the activation energy. Journal of Alloys and Compounds, 2003, 353, 200-206.	2.8	72
4	Fabrication and reliability evaluation of CoSb3/W–Cu thermoelectric element. Journal of Alloys and Compounds, 2012, 517, 198-203.	2.8	55
5	Effect of Gd addition on microstructure and corrosion behaviors of Mg–Zn–Y alloy. Journal of Magnesium and Alloys, 2016, 4, 319-325.	5.5	47
6	Microstructure transformations in the heat-treated Mg–Zn–Y alloy. Journal of Alloys and Compounds, 2013, 577, 498-506.	2.8	43
7	Effect of melt superheating treatment on solidification structures of Al 75 Bi 9 Sn 16 immiscible alloy. Journal of Molecular Liquids, 2017, 232, 457-461.	2.3	25
8	Synthesis and thermoelectric properties of tantalum-doped ZrNiSn half-Heusler alloys. Functional Materials Letters, 2014, 07, 1450032.	0.7	24
9	Effect of special microstructure on the mechanical properties of nanocomposite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 258-263.	2.6	23
10	Strain partitioning behavior of in situ Ti5Si3/TiAl composites. Journal of Alloys and Compounds, 2018, 744, 182-186.	2.8	21
11	Crystallization processes in amorphous Zr54Cu46 alloy. Journal of Non-Crystalline Solids, 2002, 311, 36-41.	1.5	20
12	Fabrication and mechanical properties of Al2O3/Ti(C0.7N0.3) nanocomposites. Materials Research Bulletin, 2006, 41, 1215-1224.	2.7	19
13	Liquid-liquid structure transition and its effect on the solidification behaviors and microstructure of Sn75Bi25 alloy. Journal of Molecular Liquids, 2018, 263, 218-227.	2.3	18
14	Effect of Mg-Zn-Nd Quasicrystal Addition on Corrosion Resistance of AZ91 Alloys. Rare Metal Materials and Engineering, 2014, 43, 791-795.	0.8	17
15	Viscous feature of Sb–Bi alloy under magnetic field. Materials Letters, 2008, 62, 73-76.	1.3	16
16	Temperature dependence of resistivity and crystallization behaviors of amorphous melt-spun ribbon of Mg66Zn30Gd4 alloy. Materials Letters, 2017, 189, 17-20.	1.3	16
17	Effect of carbon on the microstructural evolution of Zr66.7â^'Ni33.3C (x= 0, 1, 3) alloys during mechanical alloying. Journal of Non-Crystalline Solids, 2008, 354, 3984-3989.	1.5	15
18	Protective properties of magnetron-sputtered Ti coating on CoSb3 thermoelectric material. Applied Surface Science, 2014, 305, 86-92.	3.1	15

XINYING TENG

#	Article	IF	CITATIONS
19	Nanoscale strain characterization of Ti3Al precipitate-reinforced Ti alloys. Materials Letters, 2017, 209, 182-184.	1.3	14
20	High stability of Zr2Ni nanocrystals in metallic Zr–Cu–Ni glass. Journal of Alloys and Compounds, 2003, 349, 140-144.	2.8	13
21	Synthesis and thermoelectric properties of GaxCo4Sb11.7Te0.3 skutterudites. Intermetallics, 2012, 26, 31-35.	1.8	13
22	Solidification and microstructure of as-cast Mg65Zn32Y3 quasicrystal alloy. Physica B: Condensed Matter, 2013, 420, 64-69.	1.3	13
23	Liquid phase transition of Sn50Bi50 hypereutectic alloy and its thermodynamic and kinetic aspects. Journal of Molecular Liquids, 2018, 251, 185-189.	2.3	13
24	Microstructure and mechanical properties of Mg–Zn–Y alloy containing LPSO phase and I-phase. Materials Research Express, 2017, 4, 086502.	0.8	12
25	Short-Range and Medium-Range Order in Liquid Cu-Ni Alloy. Chinese Physics Letters, 2002, 19, 233-235.	1.3	11
26	Effect of graphene addition on properties of Cu-based composites for electrical contacts. Materials Research Express, 2017, 4, 066506.	0.8	11
27	Grain refining effects of the melt thermal-rate treatment and Al-Ti-B-Y refiner in as-cast Al-9Si-0.5Mg alloy. Materials Research Express, 2018, 5, 066520.	0.8	11
28	Formation of nanocrystals in metallic Zr–Cu–Ni glass. Journal of Alloys and Compounds, 2002, 347, 101-104.	2.8	10
29	Growth mechanism of an icosahedral quasicrystal and solute partitioning in a Mg-rich Mg–Zn–Y alloy. Journal of Materials Research, 2014, 29, 942-949.	1.2	10
30	Effects of WO ₃ Micro/Nano-Inclusions on the Thermoelectric Properties of Co ₄ Sb _{11.7} Te _{0.3} Skutterudite. Journal of Nanoscience and Nanotechnology, 2015, 15, 3076-3080.	0.9	10
31	High-Efficiency Inhibition of Gravity Segregation in Al–Bi Immiscible Alloys by Adding Lanthanum. Metals and Materials International, 2018, 24, 1262-1274.	1.8	9
32	Metastable microheterogeneity in liquid monotectic Bi–Ga alloys. International Journal of Cast Metals Research, 2011, 24, 65-69.	0.5	8
33	Effects of Mg–Zn–Y quasicrystal addition on the microstructures, mechanical performances and corrosion behaviors of as-cast AM60 magnesium alloy. Materials Research Express, 2018, 5, 106512.	0.8	8
34	Nano ZnO-assisted formation of zinc phosphate conversion coating for improving corrosion protection of AZ91D magnesium alloy. Materials Research Express, 2019, 6, 086405.	0.8	8
35	Characterizing the interactions of edge dislocation dipole in hexagonal close packed Ti-Al alloys. Materials and Design, 2019, 164, 107559.	3.3	8
36	Effects of Graphene Nanoplates on the Mechanical Behavior and Strengthening Mechanism of 7075Al Alloy. Materials, 2020, 13, 5808.	1.3	8

XINYING TENG

#	Article	IF	CITATIONS
37	Refinement of primary Si in Cu–50Si alloys with novel Al–Zr–P master alloy. Rare Metals, 2013, 32, 252-257.	3.6	7
38	Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys. Physica B: Condensed Matter, 2018, 537, 58-62.	1.3	7
39	Formulation of Al–Bi–Sn immiscible alloys versus the solidification behaviors and structures. Journal of Materials Science, 2019, 54, 4384-4399.	1.7	7
40	Effect of cooling rates on solidification and microstructure of rapidly solidified Mg ₅₇ Zn ₃₇ Y ₆ quasicrystal alloy. Journal of Materials Research, 2015, 30, 3324-3330.	1.2	6
41	Investigation on the modification behavior of A356.2 alloy with Yb–La composite modifier. Materials Research Express, 2018, 5, 016520.	0.8	6
42	Glass-forming ability and crystallization of Mg-Ni amorphous alloys with Y addition. Rare Metals, 2012, 31, 244-249.	3.6	5
43	Temperature dependence of the electrical resistivity of Mg–Zn–Y quasicrystal alloy. Materials Letters, 2014, 132, 334-337.	1.3	5
44	Protective properties of YSZ/Ti film deposited on CoSb 3 thermoelectric material. Corrosion Science, 2015, 98, 163-169.	3.0	5
45	Investigation on the properties of nano copper matrix composite via vacuum arc melting method. Materials Research Express, 2017, 4, 106512.	0.8	5
46	Effects of Extrusion on Mechanical and Corrosion Resistance Properties of Biomedical Mg-Zn-Nd-xCa Alloys. Materials, 2019, 12, 1049.	1.3	5
47	Effect of Al on the Microstructure and Mechanical Properties of Mg–Sn–Ca–Mn Wrought Alloy. Metals and Materials International, 2022, 28, 1480-1487.	1.8	5
48	Effects of Te addition on microstructure and mechanical properties of AZ91 magnesium alloy. Materials Research Express, 2017, 4, 016503.	0.8	4
49	Effect of solution treatment on mechanical and corrosion resistance properties of Mg–Zn–Nd– <i>x</i> Ca alloy. Materials Research Express, 2017, 4, 126510.	0.8	4
50	Effect of cooling rates and Zr addition on the microstructure and corrosion behaviors of the Mg–Zn–Gd alloys. Materials Research Express, 2018, 5, 016506.	0.8	4
51	Influence of in situ synthesized TiC on thermal stability and corrosion behavior of Zr60Cu10Al15Ni15 amorphous composites. Physica B: Condensed Matter, 2014, 436, 47-53.	1.3	3
52	Effects of several nano-carbon materials on the microstructure and properties of copper. Materials Research Express, 2017, 4, 025801.	0.8	3
53	Melt holding time as an important factor on the formation of quasicrystal phase in Mg 67 Zn 30 Gd 3 alloy. Physica B: Condensed Matter, 2018, 533, 28-32.	1.3	3
54	Strengthening effects of Y and Sr on Al–9Si–0.5Mg alloy. Materials Research Express, 2019, 6, 016538.	0.8	3

XINYING TENG

#	Article	IF	CITATIONS
55	Effect of Ti and Zr elements with equal mass ratio on microstructure and corrosion resistance of Znâ€1 1Alâ€3Mg alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 585-595.	0.8	3
56	Effects of nickel on the crystallization of Zr70Cu20Ni10 amorphous alloy. Chinese Physics B, 2002, 11, 592-595.	1.3	2
57	Decomposition of metallic Zr-Cu-Ni glass. Journal of Materials Science Letters, 2002, 21, 1705-1707.	0.5	2
58	Influence of homogenising temperature on the microstructure of 7085 Al alloy. Materials Research Innovations, 2015, 19, S112-S116.	1.0	2
59	Study on the Anti-Poison Performance of Al–Y–P Master Alloy for Impurity Ca in Aluminum Alloys. Materials, 2017, 10, 1356.	1.3	2
60	The Study of A New Symmetrical Rod Phase in Mg-Zn-Gd Alloys. Symmetry, 2019, 11, 988.	1.1	2
61	Liquid phase separation and core–shell morphology of Al ₇₅ Bi ₉ Sn ₁₆ immiscible alloy. Physics and Chemistry of Liquids, 2020, 58, 230-245.	0.4	2
62	Effect of Al on the Glass Forming Ability of Zr-Ni-Cu-Al Alloys. International Journal of Materials Research, 2002, 93, 223-227.	0.8	1
63	Effect of tellurium on viscosity and liquid structure of GaSb melts. Journal of Alloys and Compounds, 2008, 453, 458-462.	2.8	1
64	Correlation of composition, cooling rate and superheating temperature with solidification behaviors and microstructures of Al–Bi–Sn ribbons. Materials Research Express, 2019, 6, 066539.	0.8	1
65	Rheology Feature of Simple Metal Melt. Acta Metallurgica Sinica (English Letters), 2007, 20, 181-186.	1.5	0
66	Crystallization Behavior and Mechanical Properties of Mg86.33Ni12.67Y1 Amorphous Alloy. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 12-16.	1.9	0
67	A Study on the Formation of Symmetrical Rod Phase in Mg66Zn30Gd4 Alloy. Physics of Metals and Metallography, 2021, 122, 266-274.	0.3	0
68	Phase boundary sliding model controlled by diffusion solu-tion zone in superplastic deformation. Science Bulletin, 2002, 47, 1228.	1.7	0
69	Effect of Cu Additions and Extrusion Treatment on the Microstructure and Mechanical Properties of Mg–6Sn–1Al Alloy. Springer Proceedings in Physics, 2019, , 257-271.	0.1	0