Peter Altevogt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5217897/publications.pdf

Version: 2024-02-01

		21215	21843
137	14,860	62	118
papers	citations	h-index	g-index
138	138	138	19603
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	STAT3 inhibitor Napabucasin abrogates MDSC immunosuppressive capacity and prolongs survival of melanoma-bearing mice., 2022, 10, e004384.		21
2	Novel insights into the function of <scp>CD24</scp> : A driving force in cancer. International Journal of Cancer, 2021, 148, 546-559.	2.3	100
3	IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cellular Immunology, 2021, 359, 104254.	1.4	141
4	miR-449a Repression Leads to Enhanced NOTCH Signaling in TMPRSS2:ERG Fusion Positive Prostate Cancer Cells. Cancers, 2021, 13, 964.	1.7	5
5	DNA Promoter Methylation and ERG Regulate the Expression of CD24 in Prostate Cancer. American Journal of Pathology, 2021, 191, 618-630.	1.9	7
6	Reduced Placental CD24 in Preterm Preeclampsia Is an Indicator for a Failure of Immune Tolerance. International Journal of Molecular Sciences, 2021, 22, 8045.	1.8	7
7	Identification and Characterization of Tumor-Initiating Cells in Multiple Myeloma. Journal of the National Cancer Institute, 2020, 112, 507-515.	3.0	33
8	SOX2 in development and cancer biology. Seminars in Cancer Biology, 2020, 67, 74-82.	4.3	186
9	IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. , 2020, 8, e000949.		59
10	HER3-Receptor-Mediated STAT3 Activation Plays a Central Role in Adaptive Resistance toward Vemurafenib in Melanoma. Cancers, 2020, 12, 3761.	1.7	7
11	Recent insights into the role of <scp>L1CAM</scp> in cancer initiation and progression. International Journal of Cancer, 2020, 147, 3292-3296.	2.3	17
12	Modern Aspects of Immunotherapy with Checkpoint Inhibitors in Melanoma. International Journal of Molecular Sciences, 2020, 21, 2367.	1.8	34
13	Melanoma Extracellular Vesicles Generate Immunosuppressive Myeloid Cells by Upregulating PD-L1 via TLR4 Signaling. Cancer Research, 2019, 79, 4715-4728.	0.4	97
14	Role of STAT3 dependent SOX2 and CD24 expression in melanoma cell adaptive resistance towards targeted therapies. Oncotarget, 2019, 10, 1662-1663.	0.8	7
15	Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. British Journal of Cancer, 2019, 120, 16-25.	2.9	504
16	CCR5+ Myeloid-Derived Suppressor Cells Are Enriched and Activated in Melanoma Lesions. Cancer Research, 2018, 78, 157-167.	0.4	127
17	Targeting SOX2 in anticancer therapy. Expert Opinion on Therapeutic Targets, 2018, 22, 983-991.	1.5	60
18	Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Frontiers in Immunology, 2018, 9, 1310.	2.2	404

#	Article	IF	CITATIONS
19	SOX2â€mediated upregulation of CD24 promotes adaptive resistance toward targeted therapy in melanoma. International Journal of Cancer, 2018, 143, 3131-3142.	2.3	66
20	Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. Journal of Clinical Investigation, 2018, 128, 5505-5516.	3.9	193
21	Procoagulant extracellular vesicles in amniotic fluid. Translational Research, 2017, 184, 12-20.e1.	2.2	22
22	Expression of CD24 and Siglec-10 in first trimester placenta: implications for immune tolerance at the fetal–maternal interface. Histochemistry and Cell Biology, 2017, 147, 565-574.	0.8	42
23	L1CAM in the Early Enteric and Urogenital System. Journal of Histochemistry and Cytochemistry, 2017, 65, 21-32.	1.3	9
24	<i>TMPRSS2:ERG</i> gene fusion variants induce TGF- \hat{l}^2 signaling and epithelial to mesenchymal transition in human prostate cancer cells. Oncotarget, 2017, 8, 25115-25130.	0.8	23
25	L1CAM Expression is Related to Non-Endometrioid Histology, and Prognostic for Poor Outcome in Endometrioid Endometrial Carcinoma. Pathology and Oncology Research, 2016, 22, 863-868.	0.9	31
26	<scp>L1CAM</scp> in human cancer. International Journal of Cancer, 2016, 138, 1565-1576.	2.3	148
27	L1-CAM is commonly expressed in testicular germ cell tumours. Journal of Clinical Pathology, 2016, 69, 460-462.	1.0	3
28	Evaluating L1CAM expression in human endometrial cancer using qRT-PCR. Oncotarget, 2016, 7, 40221-40232.	0.8	9
29	Membranous CD24 expression as detected by the monoclonal antibody SWA11 is a prognostic marker in non-small cell lung cancer patients. BMC Clinical Pathology, 2015, 15, 19.	1.8	16
30	Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures. Biomolecules, 2015, 5, 1741-1761.	1.8	64
31	Antibody therapy to human L1CAM in a transgenic mouse model blocks local tumor growth but induces EMT. International Journal of Cancer, 2015, 136, E326-39.	2.3	37
32	Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncolmmunology, 2015, 4, e1008371.	2.1	227
33	A novel method for measuring cellular antibody uptake using imaging flow cytometry reveals distinct uptake rates for two different monoclonal antibodies targeting L1. Journal of Immunological Methods, 2015, 423, 70-77.	0.6	15
34	Angiogenic Cytokines Are Antibody Targets During Graft-versus-Leukemia Reactions. Clinical Cancer Research, 2015, 21, 1010-1018.	3.2	11
35	Single-Molecule Localization Microscopy allows for the analysis of cancer metastasis-specific miRNA distribution on the nanoscale. Oncotarget, 2015, 6, 44745-44757.	0.8	22
36	A Standardized Staining Protocol for L1CAM on Formalin-Fixed, Paraffin-Embedded Tissues Using Automated Platforms. International Journal of Biological Markers, 2014, 29, 180-183.	0.7	9

#	Article	IF	CITATIONS
37	L1CAM is expressed in triple-negative breast cancers and is inversely correlated with Androgen receptor. BMC Cancer, 2014, 14, 958.	1.1	38
38	Lack of CD24 expression in mice reduces the number of leukocytes in the colon. Immunology Letters, 2014, 161, 140-148.	1.1	4
39	Extracellular Vesicle-Mediated Transfer of Genetic Information between the Hematopoietic System and the Brain in Response to Inflammation. PLoS Biology, 2014, 12, e1001874.	2.6	312
40	L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Molecular Oncology, 2014, 8, 982-997.	2.1	34
41	Role of L1 cell adhesion molecule (L1CAM) in the metastatic cascade: promotion of dissemination, colonization, and metastatic growth. Clinical and Experimental Metastasis, 2014, 31, 87-100.	1.7	20
42	Novel insights into exosome-induced, tumor-associated inflammation and immunomodulation. Seminars in Cancer Biology, 2014, 28, 51-57.	4.3	63
43	miR-21-3p is a positive regulator of L1CAM in several human carcinomas. Cancer Letters, 2014, 354, 455-466.	3.2	39
44	Combined targeting of TGF- \hat{l}^21 and integrin \hat{l}^23 impairs lymph node metastasis in a mouse model of non-small-cell lung cancer. Molecular Cancer, 2014, 13, 112.	7.9	35
45	Metalloprotease-Mediated Tumor Cell Shedding of B7-H6, the Ligand of the Natural Killer Cell–Activating Receptor NKp30. Cancer Research, 2014, 74, 3429-3440.	0.4	169
46	Role of miR-34a as a suppressor of L1CAM in endometrial carcinoma. Oncotarget, 2014, 5, 462-472.	0.8	63
47	Epigenetic regulation of L1CAM in endometrial carcinoma: comparison to cancer–testis (CT-X) antigens. BMC Cancer, 2013, 13, 156.	1.1	15
48	Exosomes as a Potential Tool for a Specific Delivery of Functional Molecules. Methods in Molecular Biology, 2013, 1049, 495-511.	0.4	61
49	Body Fluid Exosomes Promote Secretion of Inflammatory Cytokines in Monocytic Cells via Toll-like Receptor Signaling. Journal of Biological Chemistry, 2013, 288, 36691-36702.	1.6	203
50	Influence of L1-CAM expression of breast cancer cells on adhesion to endothelial cells. Journal of Cancer Research and Clinical Oncology, 2013, 139, 107-121.	1.2	18
51	CD24 polymorphisms in breast cancer: impact on prognosis and risk. Breast Cancer Research and Treatment, 2013, 137, 927-937.	1.1	19
52	L1CAM in Early-Stage Type I Endometrial Cancer: Results of a Large Multicenter Evaluation. Journal of the National Cancer Institute, 2013, 105, 1142-1150.	3.0	185
53	L1 Cell Adhesion Molecule as a Potential Therapeutic Target in Murine Models of Endometriosis Using a Monoclonal Antibody Approach. PLoS ONE, 2013, 8, e82512.	1.1	11
54	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	2.6	1,064

#	Article	IF	Citations
55	EMT-associated up-regulation of L1CAM provides insights into L1CAM-mediated integrin signalling and NF-κB activation. Carcinogenesis, 2012, 33, 1919-1929.	1.3	75
56	Myofibroblast-induced tumorigenicity of pancreatic ductal epithelial cells is L1CAM dependent. Carcinogenesis, 2012, 33, 84-93.	1.3	18
57	L1CAM. Cell Adhesion and Migration, 2012, 6, 374-384.	1.1	168
58	Combined treatment of L1CAM antibodies and cytostatic drugs improve the therapeutic response of pancreatic and ovarian carcinoma. Cancer Letters, 2012, 319, 66-82.	3.2	49
59	Redirected T Cells That Target Pancreatic Adenocarcinoma Antigens Eliminate Tumors and Metastases in Mice. Gastroenterology, 2012, 143, 1375-1384.e5.	0.6	82
60	CD24 controls Src/STAT3 activity in human tumors. Cellular and Molecular Life Sciences, 2012, 69, 3863-3879.	2.4	69
61	CD24 Ala57Val polymorphism predicts pathologic complete response to sequential anthracycline- and taxane-based neoadjuvant chemotherapy for primary breast cancer. Breast Cancer Research and Treatment, 2012, 132, 819-831.	1.1	21
62	CD24 promotes tumor cell invasion by suppressing tissue factor pathway inhibitor-2 (TFPI-2) in a c-Src-dependent fashion. Clinical and Experimental Metastasis, 2012, 29, 27-38.	1.7	50
63	N-Glycosylation of total cellular glycoproteins from the human ovarian carcinoma SKOV3 cell line and of recombinantly expressed human erythropoietin. Glycobiology, 2011, 21, 376-386.	1.3	65
64	Linking L1CAM-mediated signaling to NF-κB activation. Trends in Molecular Medicine, 2011, 17, 178-187.	3.5	51
65	Glycoconjugate expression in adenoid cystic carcinoma of the salivary glands: upâ€regulation of L1 predicts fatal prognosis. Histopathology, 2011, 59, 299-307.	1.6	9
66	Loss of EpCAM expression in breast cancer derived serum exosomes: Role of proteolytic cleavage. Gynecologic Oncology, 2011, 122, 437-446.	0.6	248
67	Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer, 2011, 11, 108.	1.1	513
68	L1CAM protein expression is associated with poor prognosis in non-small cell lung cancer. Molecular Cancer, 2011, 10, 127.	7.9	82
69	Body fluid derived exosomes as a novel template for clinical diagnostics. Journal of Translational Medicine, 2011, 9, 86.	1.8	612
70	Contractile Forces Contribute to Increased Glycosylphosphatidylinositol-anchored Receptor CD24-facilitated Cancer Cell Invasion. Journal of Biological Chemistry, 2011, 286, 34858-34871.	1.6	65
71	Full-Length L1CAM and Not Its î"2î"27 Splice Variant Promotes Metastasis through Induction of Gelatinase Expression. PLoS ONE, 2011, 6, e18989.	1.1	18
72	Binding of the transcription factor Slug to the L1CAM promoter is essential for transforming growth factor- l^21 (TGF- l^2)-induced L1CAM expression in human pancreatic ductal adenocarcinoma cells. International Journal of Oncology, 2011, 38, 257-66.	3.9	12

#	Article	IF	Citations
73	L1CAM malfunction in the nervous system and human carcinomas. Cellular and Molecular Life Sciences, 2010, 67, 2425-2437.	2.4	122
74	L1CAM expression in endometrial carcinomas is regulated by usage of two different promoter regions. BMC Molecular Biology, 2010, 11, 64.	3.0	34
75	Upâ€regulation of L1CAM is linked to loss of hormone receptors and Eâ€cadherin in aggressive subtypes of endometrial carcinomas. Journal of Pathology, 2010, 220, 551-561.	2.1	90
76	Molecular and clinical dissection of CD24 antibody specificity by a comprehensive comparative analysis. Laboratory Investigation, 2010, 90, 1102-1116.	1.7	62
77	Therapeutic Antibodies to Human L1CAM: Functional Characterization and Application in a Mouse Model for Ovarian Carcinoma. Cancer Research, 2010, 70, 2504-2515.	0.4	62
78	Inhibition of cell proliferation, adhesion, and invasion with an anti-L1-cell adhesion molecule monoclonal antibody in an in vitro endometriosis model. Fertility and Sterility, 2010, 94, 1102-1104.	0.5	9
79	Elevated L1CAM expression in precursor lesions and primary and metastastic tissues of pancreatic ductal adenocarcinoma. Oncology Reports, 2010, 24, 909-15.	1.2	28
80	Up-regulation of L1CAM in Pancreatic Duct Cells Is Transforming Growth Factor β1– and Slug-Dependent: Role in Malignant Transformation of Pancreatic Cancer. Cancer Research, 2009, 69, 4517-4526.	0.4	90
81	Enhanced L1CAM expression on pancreatic tumor endothelium mediates selective tumor cell transmigration. Journal of Molecular Medicine, 2009, 87, 99-112.	1.7	35
82	Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Letters, 2009, 278, 73-81.	3.2	265
83	Expression and prognostic value of L1-CAM in breast cancer. Oncology Reports, 2009, 22, 1109-17.	1.2	41
84	Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/ \hat{l}^3 -secretase activity. Biochemical Journal, 2009, 420, 391-402.	1.7	89
85	Generation of novel, secreted epidermal growth factor receptor (EGFR/ErbB1) isoforms via metalloproteaseâ€dependent ectodomain shedding and exosome secretion. Journal of Cellular Biochemistry, 2008, 103, 1783-1797.	1.2	104
86	The RGD integrin binding site in human L1-CAM is important for nuclear signaling. Experimental Cell Research, 2008, 314, 2411-2418.	1.2	31
87	Antibodies directed against L1-CAM synergize with Genistein in inhibiting growth and survival pathways in SKOV3ip human ovarian cancer cells. Cancer Letters, 2008, 261, 193-204.	3.2	25
88	Functional role of N-glycosylation from ADAM10 in processing, localization and activity of the enzyme. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 905-913.	1.1	68
89	CD24 induces localization of \hat{l}^21 integrin to lipid raft domains. Biochemical and Biophysical Research Communications, 2008, 365, 35-41.	1.0	74
90	Transfer of T Cell Surface Molecules to Dendritic Cells upon CD4+ T Cell Priming Involves Two Distinct Mechanisms. Journal of Immunology, 2008, 181, 3965-3973.	0.4	29

#	Article	IF	CITATIONS
91	Targeting CD24 for Treatment of Colorectal and Pancreatic Cancer by Monoclonal Antibodies or Small Interfering RNA. Cancer Research, 2008, 68, 2803-2812.	0.4	140
92	Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neuroscience Letters, 2007, 428, 43-46.	1.0	200
93	Copper-67 Radioimmunotherapy and Growth Inhibition by Anti–L1-Cell Adhesion Molecule Monoclonal Antibodies in a Therapy Model of Ovarian Cancer Metastasis. Clinical Cancer Research, 2007, 13, 603-611.	3.2	73
94	Blockade of natural killer cell-mediated lysis by NCAM140 expressed on tumor cells. International Journal of Cancer, 2007, 120, 2625-2634.	2.3	45
95	L1-CAM in a membrane-bound or soluble form augments protection from apoptosis in ovarian carcinoma cells. Gynecologic Oncology, 2007, 104, 461-469.	0.6	83
96	Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecologic Oncology, 2007, 107, 563-571.	0.6	335
97	CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. Journal of Cell Science, 2006, 119, 314-325.	1.2	170
98	L1 on ovarian carcinoma cells is a binding partner for Neuropilin-1 on mesothelial cells. Cancer Letters, 2006, 239, 212-226.	3.2	44
99	Expression profile analysis in multiple human tumors identifies L1 (CD171) as a molecular marker for differential diagnosis and targeted therapyâ~†. Human Pathology, 2006, 37, 1000-1008.	1.1	72
100	Glucocorticoid-mediated inhibition of chemotherapy in ovarian carcinomas. International Journal of Oncology, 2006, 28, 551.	1.4	17
101	A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochemical Journal, 2006, 393, 609-618.	1.7	217
102	Exosomes: From biogenesis and secretion to biological function. Immunology Letters, 2006, 107, 102-108.	1.1	775
103	The adhesion molecule L1 (CD171) promotes melanoma progression. International Journal of Cancer, 2006, 119, 549-555.	2.3	87
104	Efficient Inhibition of Intra-Peritoneal Tumor Growth and Dissemination of Human Ovarian Carcinoma Cells in Nude Mice by Anti-L1-Cell Adhesion Molecule Monoclonal Antibody Treatment. Cancer Research, 2006, 66, 936-943.	0.4	140
105	L1 augments cell migration and tumor growth but not \hat{l}^2 3 integrin expression in ovarian carcinomas. International Journal of Cancer, 2005, 115, 658-665.	2.3	64
106	Cleavage of L1 in Exosomes and Apoptotic Membrane Vesicles Released from Ovarian Carcinoma Cells. Clinical Cancer Research, 2005, 11, 2492-2501.	3.2	174
107	Cytoplasmic CD24 Expression in Colorectal Cancer Independently Correlates with Shortened Patient Survival. Clinical Cancer Research, 2005, 11, 6574-6581.	3.2	145
108	L1 Is Sequentially Processed by Two Differently Activated Metalloproteases and Presenilin/ \hat{l}^3 -Secretase and Regulates Neural Cell Adhesion, Cell Migration, and Neurite Outgrowth. Molecular and Cellular Biology, 2005, 25, 9040-9053.	1.1	212

#	Article	IF	CITATIONS
109	L1, a novel target of \hat{l}^2 -catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. Journal of Cell Biology, 2005, 168, 633-642.	2.3	335
110	L1 (CD171) as a novel biomarker for ovarian and endometrial carcinomas. Expert Review of Molecular Diagnostics, 2004, 4, 455-462.	1.5	14
111	Adhesion molecules CD171 (L1CAM) and CD24 are expressed by primary neuroendocrine carcinomas of the skin (Merkel cell carcinomas). Journal of Cutaneous Pathology, 2003, 30, 363-368.	0.7	32
112	L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Letters, 2003, 189, 237-247.	3.2	108
113	L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet, The, 2003, 362, 869-875.	6.3	252
114	ADAM10â€mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB Journal, 2003, 17, 292-294.	0.2	199
115	CD24 expression is a new prognostic marker in breast cancer. Clinical Cancer Research, 2003, 9, 4906-13.	3.2	213
116	Critical amino acid residues of the ?4 subunit for ?4?7 integrin function. Journal of Cellular Biochemistry, 2001, 83, 304-319.	1.2	8
117	Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. Journal of Cell Biology, 2001, 155, 661-674.	2.3	357
118	Role of Src Kinases in the ADAM-mediated Release of L1 Adhesion Molecule from Human Tumor Cells. Journal of Biological Chemistry, 2000, 275, 15490-15497.	1.6	163
119	Characterization of the L1-Neurocan-binding Site. Journal of Biological Chemistry, 2000, 275, 34478-34485.	1.6	39
120	Integrin Leukocyte Function-associated Antigen-1-mediated Cell Binding Can Be Activated by Clustering of Membrane Rafts. Journal of Biological Chemistry, 1999, 274, 36921-36927.	1.6	154
121	Integrin and Neurocan Binding to L1 Involves Distinct Ig Domains. Journal of Biological Chemistry, 1999, 274, 24602-24610.	1.6	69
122	CD24 is a marker for human breast carcinoma. Cancer Letters, 1999, 143, 87-94.	3.2	92
123	CD24 mediates rolling of breast carcinoma cells on Pâ€selectin. FASEB Journal, 1998, 12, 1241-1251.	0.2	258
124	The L1 Adhesion Molecule Supports $\hat{l}\pm v\hat{l}^2$ 3-Mediated Migration of Human Tumor Cells and Activated T Lymphocytes. Biochemical and Biophysical Research Communications, 1997, 232, 236-239.	1.0	33
125	Mouse CD24 as a Signaling Molecule for Integrin-Mediated Cell Binding: Functional and Physical Association with src-Kinases. Biochemical and Biophysical Research Communications, 1997, 234, 330-334.	1.0	50
126	CD24, a Mucin-Type Glycoprotein, Is a Ligand for P-Selectin on Human Tumor Cells. Blood, 1997, 89, 3385-3395.	0.6	293

#	Article	IF	CITATIONS
127	The cell adhesion molecule L1: species- and cell-type-dependent multiple binding mechanisms. Differentiation, 1997, 61, 143-150.	1.0	54
128	Heat-stable antigen (mouse CD24) in the brain: dual but distinct interaction with P-selectin and L1. BBA - Proteins and Proteomics, 1997, 1337, 287-294.	2.1	50
129	A role for the VLA-4 integrin in the activation of human memory B cells. European Journal of Immunology, 1997, 27, 2757-2764.	1.6	26
130	L1 adhesion molecule on human lymphocytes and monocytes: expression and involvement in binding to $\hat{l}\pm\nu\hat{l}^23$ integrin. European Journal of Immunology, 1996, 26, 2508-2516.	1.6	103
131	Evidence for CisInteraction and Cooperative Signalling by the Heat-stable Antigen Nectadrin (murine) Tj ETQq1 1 993-1004.	0.784314 1.2	rgBT /Overlo
132	Heat-stable antigen (CD24) as ligand for mouse P-selectin. International Immunology, 1994, 6, 1027-1036.	1.8	110
133	Heat-stable antigen/CD24 on mouse T lymphocytes: evidence for a costimulatory function. European Journal of Immunology, 1994, 24, 731-737.	1.6	82
134	CD2: a functional adhesion molecule on murine B cells, involved in interleukin-4-induced aggregation. European Journal of Immunology, 1993, 23, 888-892.	1.6	10
135	L1 adhesion molecule on mouse leukocytes: regulation and involvement in endothelial cell binding. European Journal of Immunology, 1993, 23, 2927-2931.	1.6	39
136	Expression and function of the neural cell adhesion molecule L1 in mouse leukocytes. European Journal of Immunology, 1992, 22, 1199-1205.	1.6	59
137	The effects of anti-CD2 antibodies on the differentiation of mouse thymocytes. European Journal of Immunology, 1989, 19, 951-954.	1.6	26