
Hermann Schillers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/521777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16281-16286.	7.1	396
2	Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples. Scientific Reports, 2017, 7, 5117.	3.3	195
3	Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Archiv European Journal of Physiology, 2008, 457, 551-559.	2.8	188
4	Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Archiv European Journal of Physiology, 2011, 462, 519-528.	2.8	186
5	Human Endothelium: Target for Aldosterone. Hypertension, 2004, 43, 952-956.	2.7	124
6	Steroids dilate nuclear pores imaged with atomic force microscopy. Journal of Cellular Physiology, 2005, 202, 591-601.	4.1	99
7	PeakForce Tapping resolves individual microvilli on living cells. Journal of Molecular Recognition, 2016, 29, 95-101.	2.1	97
8	Differential action of steroid hormones on human endothelium. Journal of Cell Science, 2006, 119, 1926-1932.	2.0	83
9	C-Reactive Protein Makes Human Endothelium Stiff and Tight. Hypertension, 2011, 57, 231-237.	2.7	80
10	Real-Time Monitoring of Cell Elasticity Reveals Oscillating Myosin Activity. Biophysical Journal, 2010, 99, 3639-3646.	0.5	78
11	The genome of HSV-1 translocates through the nuclear pore as a condensed rod-like structure. Journal of Cell Science, 2006, 119, 23-30.	2.0	52
12	Imaging CFTR: A Tail to Tail Dimer with a Central Pore. Cellular Physiology and Biochemistry, 2004, 14, 1-10.	1.6	49
13	Myosin 1G (Myo1G) is a haematopoietic specific myosin that localises to the plasma membrane and regulates cell elasticity. FEBS Letters, 2010, 584, 493-499.	2.8	46
14	Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging. Nanotechnology, 2008, 19, 384017.	2.6	40
15	Reduced number of CFTR molecules in erythrocyte plasma membrane of cystic fibrosis patients. Molecular Membrane Biology, 2006, 23, 317-323.	2.0	38
16	Endothelial EphB4 maintains vascular integrity and transport function in adult heart. ELife, 2019, 8, .	6.0	38
17	Paracellular Permeability of Bronchial Epithelium is Controlled by CFTR. Cellular Physiology and Biochemistry, 2011, 28, 289-296.	1.6	31
18	Plasma Membrane Plasticity of Xenopus laevis Oocyte Imaged with Atomic Force Microscopy. Cellular Physiology and Biochemistry, 2000, 10, 99-107.	1.6	30

HERMANN SCHILLERS

#	Article	IF	CITATIONS
19	Dose-dependent endothelial cell growth and stiffening by aldosterone: endothelial protection by eplerenone. Journal of Hypertension, 2007, 25, 639-647.	0.5	27
20	Paracellular Transport through Healthy and Cystic Fibrosis Bronchial Epithelial Cell Lines – Do We Have a Proper Model?. PLoS ONE, 2014, 9, e100621.	2.5	27
21	Imaging CFTR in its native environment. Pflugers Archiv European Journal of Physiology, 2008, 456, 163-177.	2.8	26
22	Single plasma membrane K+ channel detection by using dual-color quantum dot labeling. American Journal of Physiology - Cell Physiology, 2006, 291, C266-C269.	4.6	22
23	Cystic fibrosis transmembrane conductance regulator is involved in polyphenol-induced swelling of the endothelial glycocalyx. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1521-1530.	3.3	22
24	The anti-adhesive effect of glycoclusters on <i>Pseudomonas aeruginosa</i> bacteria adhesion to epithelial cells studied by AFM single cell force spectroscopy. Nanoscale, 2018, 10, 12771-12778.	5.6	22
25	Physiological Concept for a Blood Based CFTR Test. Cellular Physiology and Biochemistry, 2006, 17, 29-36.	1.6	20
26	Nanomechanics of Human Adipose-Derived Stem Cells: Small GTPases Impact Chondrogenic Differentiation. Tissue Engineering - Part A, 2012, 18, 1035-1044.	3.1	19
27	KCa3.1 channel inhibition leads to an ICAM-1 dependent increase of cell-cell adhesion between A549 lung cancer and HMEC-1 endothelial cells. Oncotarget, 2017, 8, 112268-112282.	1.8	16
28	IADS, a Decomposition Product of DIDS Activates a Cation Conductance in <i>Xenopus</i> Oocytes and Human Erythrocytes: New Compound for the Diagnosis of Cystic Fibrosis. Cellular Physiology and Biochemistry, 2006, 18, 243-252.	1.6	13
29	Quantification of heparin's antimetastatic effect by singleâ€cell force spectroscopy. Journal of Molecular Recognition, 2021, 34, e2854.	2.1	10
30	Ethanol alters access to the cell nucleus. Pflugers Archiv European Journal of Physiology, 2007, 453, 809-818.	2.8	9
31	Signals of the Neuropilin-1–MET Axis and Cues of Mechanical Force Exertion Converge to Elicit Inflammatory Activation in Coherent Endothelial Cells. Journal of Immunology, 2019, 202, 1559-1572.	0.8	8
32	Normal and Pathological Erythrocytes Studied by Atomic Force Microscopy. Methods in Molecular Biology, 2011, 736, 223-241.	0.9	7
33	Measuring the Elastic Properties of Living Cells. Methods in Molecular Biology, 2019, 1886, 291-313.	0.9	6
34	Uptake of platelets by cancer cells and recycling of the platelet protein CD42a. Journal of Thrombosis and Haemostasis, 2022, 20, 170-181.	3.8	5
35	Fifteen years of <i>Servitude et Grandeur</i> to the application of a biophysical technique in medicine: The tale of AFMBioMed. Journal of Molecular Recognition, 2019, 32, e2773.	2.1	4
36	Nanoarchitecture of Plasma Membrane Visualized with Atomic Force Microscopy. , 2001, , 405-424.		3

Nanoarchitecture of Plasma Membrane Visualized with Atomic Force Microscopy., 2001, , 405-424. 36

#	Article	IF	CITATIONS
37	Atomic Force Microscopy in Nanomedicine. Nanoscience and Technology, 2006, , 1-26.	1.5	3
38	Restless cell syndrome. Journal of Physiology, 2014, 592, 1175-1176.	2.9	2
39	Special collection for the ninth AFM BioMed conference. Journal of Molecular Recognition, 2022, 35, e2954.	2.1	1
40	Atomic Force Microscopy in Nanomedicine. , 2010, , 713-738.		0
41	Nanophysiology of Cells, Channels and Nuclear Pores. , 2011, , 117-144.		0