Jeffrey A Chao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5217743/publications.pdf Version: 2024-02-01

IFFEDEV A CHAO

#	Article	IF	CITATIONS
1	Stress granules: regulators or byâ€products?. FEBS Journal, 2022, 289, 363-373.	2.2	21
2	HDLBP binds ER-targeted mRNAs by multivalent interactions to promote protein synthesis of transmembrane and secreted proteins. Nature Communications, 2022, 13, 2727.	5.8	9
3	Dynamic association of human Ebp1 with the ribosome. Rna, 2021, 27, 411-419.	1.6	9
4	Structure of the human C9orf72-SMCR8 complex reveals a multivalent protein interaction architecture. PLoS Biology, 2021, 19, e3001344.	2.6	6
5	deepBlink: threshold-independent detection and localization of diffraction-limited spots. Nucleic Acids Research, 2021, 49, 7292-7297.	6.5	18
6	Single-molecule mRNA and translation imaging in neurons. Biochemical Society Transactions, 2021, 49, 2221-2227.	1.6	0
7	Plasma Membrane Anchoring and Gag:Gag Multimerization on Viral RNA Are Critical Properties of HIV-1 Gag Required To Mediate Efficient Genome Packaging. MBio, 2021, 12, e0325421.	1.8	12
8	CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing's sarcoma. Nature Chemical Biology, 2020, 16, 50-59.	3.9	59
9	Insights into mRNA degradation from single-molecule imaging in living cells. Current Opinion in Structural Biology, 2020, 65, 89-95.	2.6	5
10	Single-Molecule Imaging Reveals Translation of mRNAs Localized to Stress Granules. Cell, 2020, 183, 1801-1812.e13.	13.5	186
11	Dynamics of uS19 C-Terminal Tail during the Translation Elongation Cycle in Human Ribosomes. Cell Reports, 2020, 31, 107473.	2.9	32
12	A Single-Molecule RNA Mobility Assay to Identify Proteins that Link RNAs to Molecular Motors. Methods in Molecular Biology, 2020, 2166, 269-282.	0.4	1
13	Quantification of mRNA Turnover in Living Cells: A Pipeline for TREAT Data Analysis. Methods in Molecular Biology, 2019, 2038, 75-88.	0.4	2
14	The structural basis for RNA selectivity by the IMP family of RNA-binding proteins. Nature Communications, 2019, 10, 4440.	5.8	36
15	Detection and quantification of RNA decay intermediates using XRN1-resistant reporter transcripts. Nature Protocols, 2019, 14, 1603-1633.	5.5	20
16	Single-Molecule Imaging of mRNA Localization and Regulation during the Integrated Stress Response. Molecular Cell, 2019, 73, 946-958.e7.	4.5	125
17	Caught in the Act? Quantifying Biochemistry Inside and Outside of Biomolecular Condensates. Biochemistry, 2019, 58, 142-143.	1.2	0
18	Detection of the First Round of Translation: The TRICK Assay. Methods in Molecular Biology, 2018, 1649, 373-384.	0.4	10

JEFFREY A CHAO

#	Article	IF	CITATIONS
19	Imaging the Life and Death of mRNAs in Single Cells. Cold Spring Harbor Perspectives in Biology, 2018, 10, a032086.	2.3	8
20	Structural basis of IMP3 RRM12 recognition of RNA. Rna, 2018, 24, 1659-1666.	1.6	19
21	The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single Cells. Molecular Cell, 2017, 68, 615-625.e9.	4.5	165
22	Single-Molecule Quantification of Translation-Dependent Association of mRNAs with the Endoplasmic Reticulum. Cell Reports, 2017, 21, 3740-3753.	2.9	80
23	TRICK. Methods in Enzymology, 2016, 572, 123-157.	0.4	24
24	An RNA biosensor for imaging the first round of translation from single cells to living animals. Science, 2015, 347, 1367-1671.	6.0	238
25	Dynamic visualization of transcription and RNA subcellular localization in zebrafish. Development (Cambridge), 2015, 142, 1368-74.	1.2	53
26	Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nature Methods, 2013, 10, 119-121.	9.0	267
27	Single-mRNA counting using fluorescent in situ hybridization in budding yeast. Nature Protocols, 2012, 7, 408-419.	5.5	105
28	Fluorescence Fluctuation Spectroscopy Enables Quantitative Imaging of Single mRNAs in Living Cells. Biophysical Journal, 2012, 102, 2936-2944.	0.2	174
29	Imaging Translation in Single Cells Using Fluorescent Microscopy. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012310-a012310.	2.3	33
30	An Unbiased Analysis Method to Quantify mRNA Localization Reveals Its Correlation with Cell Motility. Cell Reports, 2012, 1, 179-184.	2.9	69
31	Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes and Development, 2012, 26, 43-53.	2.7	127
32	ZBP1 KH34 consensus RNAâ€binding site identifies posttranscriptional regulatory networks. FASEB Journal, 2012, 26, 949.1.	0.2	0
33	Real-Time Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene. Science, 2011, 332, 475-478.	6.0	566
34	A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nature Methods, 2011, 8, 165-170.	9.0	340
35	ZBP1 recognition of β-actin zipcode induces RNA looping. Genes and Development, 2010, 24, 148-158.	2.7	161
36	Imaging Realâ€Time Gene Expression in Living Cells. FASEB Journal, 2009, 23, 316.3.	0.2	0

JEFFREY A CHAO

#	Article	IF	CITATIONS
37	Structural basis for the coevolution of a viral RNA–protein complex. Nature Structural and Molecular Biology, 2008, 15, 103-105.	3.6	211
38	Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nature Structural and Molecular Biology, 2005, 12, 952-957.	3.6	289
39	Joint X-Ray and NMR Refinement of the Yeast L30e-mRNA Complex. Structure, 2004, 12, 1165-1176.	1.6	58
40	Combinatorial crystallization of an RNA–protein complex. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 466-473.	2.5	7
41	Inherent Protein Structural Flexibility at the RNA-binding Interface of L30e. Journal of Molecular Biology, 2003, 326, 999-1004.	2.0	32
42	Using the Bacteriophage MS2 Coat Protein–RNA Binding Interaction to Visualize RNA in Living Cells. , 0, , 163-174.		1
43	Live imaging of the co-translational recruitment of XBP1 mRNA to the ER and its processing by diffuse, non-polarized IRE11±. ELife, 0, 11, .	2.8	4